Natural products that contain functional groups with heteroatom-heteroatom linkages (X–X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X–X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X–X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X–X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
The molecular architectures and potent bioactivities of diazo-containing natural products have attracted the interest of synthetic and biological chemists. Despite this attention, the biosynthetic enzymes involved in diazo group construction have not been identified. Here, we show that the ATP-dependent enzyme CreM installs the diazo group in cremeomycin via late-stage N-N bond formation using nitrite. This finding should inspire efforts to use diazo-forming enzymes in biocatalysis and synthetic biology as well as enable genome-based discovery of new diazo-containing metabolites.
The lomaiviticins are a family of cytotoxic marine natural products that have captured the attention of both synthetic and biological chemists due to their intricate molecular scaffolds and potent biological activities. Here we describe the identification of the gene cluster responsible for lomaiviticin biosynthesis in Salinispora pacifica strains DPJ-0016 and DPJ-0019 using a combination of molecular approaches and genome sequencing. The link between the lom gene cluster and lomaiviticin production was confirmed using bacterial genetics, and subsequent analysis and annotation of this cluster revealed the biosynthetic basis for the core polyketide scaffold. Additionally, we have used comparative genomics to identify candidate enzymes for several unusual tailoring events, including diazo formation and oxidative dimerization. These findings will allow further elucidation of the biosynthetic logic of lomaiviticin assembly and provide useful molecular tools for application in biocatalysis and synthetic biology.
Despite significant advances in treating infectious diseases worldwide, morbidity and mortality associated with pathogen infection remains extraordinarily high and represents a critical scientific and global health challenge. Current strategies to combat these infectious agents include a combination of vaccines, small molecule drugs, increased hygiene standards, and disease-specific interventions. While these approaches have helped to drastically reduce the incidence and number of deaths associated with infection, continued investment in current strategies and the development of novel therapeutic approaches will be required to address these global health threats. Recently, human- and vector-associated microbiotas, the assemblages of microorganisms living on and within their hosts, have emerged as a potentially important factor mediating both infection risk and disease progression. These complex microbial communities are involved in intricate and dynamic interactions with both pathogens as well as the innate and adaptive immune systems of their hosts. Here, we discuss recent findings that have illuminated the importance of resident microbiotas in infectious disease, emphasizing opportunities for novel therapeutic intervention and future challenges for the field. Our discussion will focus on four major global health threats: tuberculosis, malaria, HIV, and enteric/diarrheal diseases. We hope this Perspective will highlight the many opportunities for chemists and chemical biologists in this field as well as inspire efforts to elucidate the mechanisms underlying established disease correlations, identify novel microbiota-based risk factors, and develop new therapeutic interventions.
Diazo groups are found in a range of natural products that possess potent biological activities. Despite longstanding interest in these metabolites, diazo group biosynthesis is not well understood, in part because of difficulties in identifying specific genes linked to diazo formation. Here we describe the discovery of the gene cluster that produces the o-diazoquinone natural product cremeomycin and its heterologous expression in Streptomyces lividans. We have used stable isotope feeding experiments and in vitro characterization of biosynthetic enzymes to decipher the order of events in this pathway and establish that diazo construction involves late-stage N–N bond formation. This work represents the first successful production of a diazo-containing metabolite in a heterologous host, experimentally linking a set of genes with diazo formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.