The in situ diazonium reduction reaction is a reliable and well-known approach for the surface modification of carbon materials for use in a range of applications, including in energy conversion, as chromatography supports, in sensors, etc. Here, this approach was used for the first time with mesoporous colloid-imprinted carbons (CICs), materials that contain ordered monodisperse pores (10-100 nm in diameter) and are inherently highly hydrophilic, using a common microporous carbon (Vulcan carbon (VC)), which is relatively more hydrophobic, for a comparison. The ultimate goal of this work was to modify the CIC wettability without altering its nanostructure and also to lower its susceptibility to oxidation, as required in fuel cell and battery electrodes, by the attachment of pentafluorophenyl (-PhF) groups onto their surfaces. This was shown to be successful for the CIC, with the -PhF groups uniformly coating the inner pore walls at a surface coverage of ca. 90% and allowing full solution access to the mesopores, while the -PhF groups deposited only on the outer VC surface, likely blocking its micropores. Contact angle kinetics measurements showed enhanced hydrophobicity, as anticipated, for both the -PhF modified CIC and VC materials, even revealing superhydrophobicity at times for the CIC materials. In contrast, water vapor sorption and cyclic voltammetry suggested that the micropores remained hydrophilic, arising from the deposition of smaller N- and O-containing surface groups, caused by a side reaction during the in situ diazonium functionalization process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.