stack of Sertoli cell F-actin-containing hoops applied to the elongating spermatid head. A tubulobulbar complex, formed by cytoplasmic processes protruding from the elongating spermatid head extending into the adjacent Sertoli cell, is located at the concave side of the spermatid head. The tubulobulbar complex might provide stabilizing conditions, together with the actin-afadin-nectin-2/nectin-3 adhesion unit, to enable sustained and balanced clutching exogenous forces applied during the elongation of the spermatid head.
Nuclear shaping is a critical event during sperm development as demonstrated by the incidence of male infertility associated with abnormal sperm head shaping. Herein, we demonstrate that mouse and rat spermatids assemble in the subacrosomal space a cytoskeletal scaffold containing F-actin and Sak57, a keratin ortholog. The cytoskeletal plate, designated acroplaxome, anchors the developing acrosome to the nuclear envelope. The acroplaxome consists of a marginal ring containing keratin 5 10-nm-thick filaments and F-actin. The ring is closely associated with the leading edge of the acrosome and to the nuclear envelope during the elongation of the spermatid head. Anchorage of the acroplaxome to the gradually shaping nucleus is not disrupted by hypotonic treatment and brief Triton X-100 extraction. By examining spermiogenesis in the azh mutant mouse, characterized by abnormal spermatid/sperm head shaping, we have determined that a deformity of the spermatid nucleus is restricted to the acroplaxome region. These findings lead to the suggestion that the acroplaxome nucleates an F-actin-keratin-containing assembly with the purpose of stabilizing and anchoring the developing acrosome during spermatid nuclear elongation. The acroplaxome may also provide a mechanical planar scaffold modulating external clutching forces generated by a stack of Sertoli cell F-actin-containing hoops encircling the elongating spermatid nucleus.
Intramanchette transport (IMT) and intraflagellar transport (IFT) share similar molecular components: a raft protein complex transporting cargo proteins mobilized along microtubules by molecular motors. IFT, initially discovered in flagella of Chlamydomonas, has been also observed in cilia of the worm Caenorhabditis elegans and in mouse ciliated and flagellated cells. IFT has been defined as the mechanism by which protein raft components (also called IFT particles) are displaced between the flagellum and the plasma membrane in the anterograde direction by kinesin-II and in the retrograde direction by cytoplasmic dynein 1b. Mutation of the gene Tg737, encoding one of the components of the raft protein complex, designated Polaris in the mouse and IFT88 in both Chlamydomonas and mouse, results in defective ciliogenesis and flagellar development as well as asymmetry in left-right axis determination. Polaris/IFT88 is detected in the manchette of mouse and rat spermatids. Indications of an IMT mechanism originated from the finding that two proteins associated with the manchette (Sak57/K5 and TBP-1, the latter a component of the 26S proteasome) repositioned to the centrosome and sperm tail once the manchette disassembled. IMT has the features of the IFT machinery but, in addition, facilitates nucleocytoplasmic exchange activities during spermiogenesis. An example is Ran, a small GTPase present in the nucleus and cytoplasm of round spermatids and in the manchette of elongating spermatids. Upon disassembly of the manchette, Ran GTPase is found in the centrosome region of elongating spermatids. Because defective molecular motors and raft proteins result in defective flagella, cilia, and ciliacontaining photoreceptor cells in the retina, IMT and IFT are emerging as essential mechanisms for managing critical aspects of sperm development. Details of specific role of Ran GTPase in nucleocytoplasmic transport and its relocation from the manchette to the centrosome to the sperm tail await elucidation. Mol.
A whole-mount electron microscope technique has allowed direct visualization of the transcription process in mouse spermatids. These observations have been supported by light and electron microscope autoradiographic techniques that employ [SH]uridine and [SH]arginine in attempts to clarify mechanisms of RNA synthesis and their relationship to nuclear histone changes throughout spermiogenesis. Early spermatid genomes are dispersed almost completely, whereas in later spermiogenic steps the posterior or flagellar nuclear region is readily dispersed and the anterior or subacrosomal nuclear region remains compact. Display of genome segments permits identification of regions where transcription complexes, presumably heterogeneous nuclear RNA species, are seen related to chromatin. These complexes appear as ribonucleoprotein chains, some of them of considerable length, decreasing progressively in number in late spermiogenic steps. This decrease coincides with diminishing rates of [SH]uridine incorporation. Two distinct patterns of chromatin have been identified: a beaded chromatin type associated with transcription complexes encountered in early spermatids; and a smooth chromatin type not involved in transcriptive activity observed in advanced spermiogenic genomes. Protein particles staining densely with phosphotungstic acid become apparent in nuclei of spermatids after [SH]arginine incorporation becomes significant. There is no structural or autoradiographic evidence for the presence of nucleoli during spermiogenesis. From these data and from previous experimental findings, we conclude that: (a) spermatogonia, spermatocytes and Sertoli cells are transcriptionally expressed into heterogeneous nuclear RNA and preribosomal RNA species whereas transcription in spermatids is predominantly heterogeneous nuclear RNA; and (b) the modification of the chromatin patterns in late spermiogenic steps indicates a stabilized genome that restricts transcriptive functions.Spermatogenesis in mammals is a highly synchronous process characterized, among other events, by regular temporal variations in the amount of transcription at various loci of the constituent genomes. Several aspects of RNA synthesis in meiotic prophase stages in the mouse have been described recently (15). In that study we reported evidence for two major classes of RNA associated with autosomes in synapsis: a preribosomal RNA (prRNA) located at the terminal or basal knob region of some autosomes, and a heterogeneous nuclear RNA (hnRNA) distributed along the 258
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.