BackgroundA previous study has shown no measurable improvement in triage accuracy among physicians attending the Advanced Trauma Life Support (ATLS) course and suggests a curriculum revision regarding triage. Other studies have indicated that cooperative learning helps students acquire knowledge.ObjectiveThe present study was designed to evaluate the effectiveness of trauma cards in triage training for firemen.MethodsEighty-six firemen were randomly assigned into two groups: the trauma card group and the direct instruction group. Both groups received the same 30-min PowerPoint lecture on how to perform triage according to the Sort Assess Lifesaving interventions Treatment and transport (SALT) Mass Casualty Triage Algorithm. In the trauma card group, the participants were divided into groups of 3–5 and instructed to triage 10 trauma victims according to the descriptions on the trauma cards. In the direct instruction group, written forms about the same 10 victims were used and discussed as a continuation of the PowerPoint lecture. Total training time was 60 min for both groups. A test was distributed before and after the educational intervention to measure the individual triage skills. The same test was applied again 6 months later.ResultsThere was a significant improvement in triage skills directly after the intervention and this was sustained 6 months later. No significant difference in triage skills was seen between the trauma card group and the direct instruction group. Previous experience of multi-casualty incidents, years in service, level of education or age did not have any measurable effects on triage accuracy.ConclusionsOne hour of triage training with the SALT Mass Casualty Triage Algorithm was enough to significantly improve triage accuracy in both groups of firemen with sustained skills 6 months later. Further studies on the first assessment on scene versus patient outcome are necessary to provide evidence that this training can improve casualty outcome. The efficacy and validity of trauma cards for disaster management training need to be tested in future studies.
BackgroundThe intense ischemic pain of acute compartment syndrome can be difficult to discriminate from the pain related to an associated fracture. Lacking objective measures, the decision to perform fasciotomy is often only based on clinical findings and performed at a low threshold. Biomarkers of muscle cell damage might help to identify and monitor patients at risk. In patients with fractures, however, markers of muscle cell damage could be elevated because of other reasons associated with the trauma, which would make interpretation difficult. In a review of all patients who underwent emergency fasciotomy in our health care district we aimed to investigate the decision-making process and specifically the use of biomarkers in patients with and without fractures.MethodsIn the southeast health care region of Sweden 79 patients (60 men) with fractures (median age 26 years) and 42 patients (34 men) without associated fractures (median age 44 years) were treated with emergency fasciotomy of the lower leg between 2007 and 2016. Differences in clinical findings, p-myoglobin and p-creatine phosphokinase as well as pressure measurements were investigated.ResultsP-myoglobin was analyzed preoperatively in 20% of all cases and p-creatine phosphokinase in 8%. Preoperative levels of p-myoglobin were lower in patients with fractures (median 1065 μg/L, range 200–3700 μg/L) compared with those without fractures (median 7450 μg/L, range 29–31,000 μg/L), p < 0.05. Preoperative intracompartmental pressure was lower in the fracture group (median 45 mmHg, range 25–90 mmHg) compared with those without fractures (median 83 mmHg, range 18–130 mmHg), p < 0.05.ConclusionsBiomarkers are seldom used in the context of acute fasciotomy of the lower leg. Contrary to our expectations, preoperative levels of p-myoglobin and intracompartmental pressures were lower in fracture patients. These findings support differences in the underlying pathomechanism between the groups and indicate that biomarkers of muscle cell necrosis might play a more important role in the diagnosis of acute compartment syndrome than previously thought.
Circulating microRNAs (miRNAs) have become increasingly popular biomarker candidates in various diseases. However, heparin-based anticoagulants might affect the detection of target miRNAs in blood samples during quantitative polymerase chain reaction (qPCR)-based analysis of miRNAs involving RNA extraction, cDNA synthesis and the polymerase catalyzed reaction. Because low-molecular-weight heparins (LMWH) are widely used in routine healthcare, we aimed to investigate whether a prophylactic dose of the LMWH tinzaparin influences qPCR-based quantification of circulating miRNAs. A total of 30 subjects were included: 16 fracture patients with tinzaparin treatment and 14 non-fracture controls without anticoagulation therapy. To control for the effect of tinzaparin on miRNA analysis an identical concentration of synthetic miRNAs was added to plasma, isolated RNA and prepared complementary DNA (cDNA) from all samples in both groups. No significant difference was observed for cDNA synthesis or qPCR when comparing tinzaparin-treated patients with untreated controls. Among the tinzaparin-treated patients, plasma levels of six endogenous miRNAs (hsa-let-7i-5p, hsa-miR-30e-5p, hsa-miR-222-3p, hsa-miR-1-3p, hsa-miR-133a-3p, hsa-miR-133b) were measured before and one to six hours after a subcutaneous injection of tinzaparin 4500IU. No significant effect was observed for any of the investigated miRNAs. A prophylactic dose of 4500IU tinzaparin does not seem to affect cDNA synthesis or qRT-PCR-based quantification of circulating miRNAs.
IntroductionThe ischaemic pain of acute compartment syndrome (ACS) can be difficult to discriminate from the pain linked to an associated fracture. Lacking objective measures, the decision to perform fasciotomy is based on clinical findings and performed at a low level of suspicion. Biomarkers of muscle cell damage may help to identify and monitor patients at risk, similar to current routines for patients with acute myocardial infarction. This study will test the hypothesis that biomarkers of muscle cell damage can predict ACS in patients with tibial fractures.Methods and analysisPatients aged 15–65 years who have suffered a tibial fracture will be included. Plasma (P)-myoglobin and P-creatine phosphokinase will be analysed at 6-hourly intervals after admission to the hospital (for 48 hours) and—if applicable—after surgical fixation or fasciotomy (for 24 hours). In addition, if ACS is suspected at any other point in time, blood samples will be collected at 6-hourly intervals. An independent expert panel will assess the study data and will classify those patients who had undergone fasciotomy into those with ACS and those without ACS. All primary comparisons will be performed between fracture patients with and without ACS. The area under the receiver operator characteristics curves will be used to identify the success of the biomarkers in discriminating between fracture patients who develop ACS and those who do not. Logistic regression analyses will be used to assess the discriminative abilities of the biomarkers to predict ACS corrected for prespecified covariates.Ethics and disseminationThe study has been approved by the Regional Ethical Review Boards in Linköping (2017/514-31) and Helsinki/Uusimaa (HUS/2500/2000). The BioFACTS study will be reported in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology recommendations.Trial registration numberNCT04674592.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.