Please scroll down for article-it is on subsequent pages With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.) and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to transform strategic visions and achieve better outcomes. For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org
Current automated market makers over binary events suffer from two problems that make them impractical. First, they are unable to adapt to liquidity, so trades cause prices to move the same amount in both thick and thin markets. Second, under normal circumstances, the market maker runs at a deficit. In this paper, we construct a market maker that is both sensitive to liquidity and can run at a profit. Our market maker has bounded loss for any initial level of liquidity and, as the initial level of liquidity approaches zero, worstcase loss approaches zero. For any level of initial liquidity we can establish a boundary in market state space such that, if the market terminates within that boundary, the market maker books a profit regardless of the realized outcome. Furthermore, we provide guidance as to how our market maker can be implemented over very large event spaces through a novel cost-function-based sampling method.
Current automated market makers over binary events suffer from two problems that make them impractical. First, they are unable to adapt to liquidity, so trades cause prices to move the same amount in both thick and thin markets. Second, under normal circumstances, the market maker runs at a deficit. In this paper, we construct a market maker that is both sensitive to liquidity and can run at a profit. Our market maker has bounded loss for any initial level of liquidity and, as the initial level of liquidity approaches zero, worstcase loss approaches zero. For any level of initial liquidity we can establish a boundary in market state space such that, if the market terminates within that boundary, the market maker books a profit regardless of the realized outcome. Furthermore, we provide guidance as to how our market maker can be implemented over very large event spaces through a novel cost-function-based sampling method.
Competitive equilibrium with equal incomes (CEEI) is a wellknown fair allocation mechanism [Foley, 1967, Varian, 1974, Thomson and Varian, 1985; however, for indivisible resources a CEEI may not exist. It was shown in Budish [2011] that in the case of indivisible resources there is always an allocation, called A-CEEI, that is approximately fair, approximately truthful, and approximately efficient, for some favorable approximation parameters. This approximation is used in practice to assign business school students to classes. In this paper we show that finding the A-CEEI allocation guaranteed to exist by Budish's theorem is PPAD-complete. We further show that finding an approximate equilibrium with better approximation guarantees is even harder: NP-complete.
Abstract. Combinatorial allocation involves assigning bundles of items to agents when the use of money is not allowed. Course allocation is one common application of combinatorial allocation, in which the bundles are schedules of courses and the assignees are students. Existing mechanisms used in practice have been shown to have serious flaws, which lead to allocations that are inefficient, unfair, or both. A recently developed mechanism is attractive in theory but has several features that limit its feasibility for practice. This paper reports on the design and implementation of a new course allocation mechanism, Course Match, that is suitable in practice. To find allocations, Course Match performs a massive parallel heuristic search that solves billions of mixed-integer programs to output an approximate competitive equilibrium in a fake-money economy for courses. Quantitative summary statistics for two semesters of full-scale use at a large business school (the Wharton School of Business, which has about 1,700 students and up to 350 courses in each semester) demonstrate that Course Match is both fair and efficient, a finding reinforced by student surveys showing large gains in satisfaction and perceived fairness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.