This report presents the results of a friendly competition for formal verification and policy synthesis of stochastic models. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2018. In this first edition, we present five benchmarks with different levels of complexities and stochastic flavours. We make use of six different tools and frameworks (in alphabetical order): Barrier Certificates, FAUST2, FIRM-GDTL, Modest, SDCPN modelling & MC simulation and SReachTools; and attempt to solve instances of the five different benchmark problems. Through these benchmarks, we capture a snapshot on the current state-of the art tools and frameworks within the stochastic modelling domain. We also present the challenges encountered within this domain and highlight future plans which will push forward the development of more tools and methodologies for performing formal verification and optimal policy synthesis of stochastic processes.
We examine Lagrangian techniques for computing underapproximations of finite-time horizon, stochastic reachavoid level-sets for discrete-time, nonlinear systems. We use the concept of reachability of a target tube in the control literature to define robust reach-avoid sets which are parameterized by the target set, safe set, and the set in which the disturbance is drawn from. We unify two existing Lagrangian approaches to compute these sets and establish that there exists an optimal control policy of the robust reach-avoid sets which is a Markov policy. Based on these results, we characterize the subset of the disturbance space whose corresponding robust reachavoid set for the given target and safe set is a guaranteed underapproximation of the stochastic reach-avoid level-set of interest. The proposed approach dramatically improves the computational efficiency for obtaining an underapproximation of stochastic reach-avoid level-sets when compared to the traditional approaches based on gridding. Our method, while conservative, does not rely on a grid, implying scalability as permitted by the known computational geometry constraints. We demonstrate the method on two examples: a simple twodimensional integrator, and a space vehicle rendezvous-docking problem.
This report presents the results of a friendly competition for formal verification and policy synthesis of stochastic models. It also introduces new benchmarks within this category, and recommends next steps for this category towards next year's edition of the competition. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in Spring 2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.