Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers.
number: 308515 Microglia are cells that protect brain tissue from invading agents and toxic substances, first by releasing pro-inflammatory cytokines, and thereafter by clearing tissue by phagocytosis. Microglia express ferritin, a protein with ferroxidase activity capable of storing iron, a metal that accumulates in brain during aging. Increasing evidence suggests that ferritin plays an important role in inflammation. However, it is not known if ferritin/ iron content can be related to the activation state of microglia. To this end, we aimed to delineate the role of ferritin in microglia activation in a non-human primate model. We analyzed brains of male marmosets and observed an increased density of ferritin+ microglia with an activated phenotype in hippocampus and cortex of old marmosets (mean age 11.25 ± 0.70 years) compared to younger subjects. This was accompanied by an increased number of dystrophic microglia in old marmosets. However, in aged subjects (mean age 16.83 ± 2.59 years) the number of ferritin+ microglia was decreased compared to old ones. Meanwhile, the content of iron in brain tissue and cells with oxidized RNA increased during aging in all hippocampal and cortical regions analyzed. Abundant amoeboid microglia were commonly observed surrounding neurons with oxidized RNA. Notably, amoeboid microglia were arginase1+ and IL-10+, indicative of a M2 phenotype. Some of those M2 cells also presented RNA oxidation and a dystrophic phenotype. Therefore, our data suggest that ferritin confers protection to microglia in adult and old marmosets, while in aged subjects the decline in ferritin and the increased amount of iron in brain tissue may be related to the increased number of cells with oxidized RNA, perhaps precluding the onset of neurodegeneration.
Immunolocalization techniques are standard in biomedical research. Tissue fixation with aldehydes and cell membrane permeabilization with detergents can distort the specific binding of antibodies to their high affinity epitopes. In immunofluorescence protocols, it is desirable to quench the sample's autofluorescence without reduction of the antibody-dependent signal. Here we show that adding glycine to the blocking buffer and diluting the antibodies in a phosphate saline solution containing glycine, Triton X-100, Tween20 and hydrogen peroxide increase the specific antibody signal in tissue immunofluorescence and immunogold electron microscopy. This defined antibody signal enhancer (ASE) solution gives similar results to the commercially available Pierce Immunostain Enhancer (PIE). Furthermore, prolonged tissue incubation in resin and fixative and application of ASE or PIE are described in an improved protocol for triple immunogold electron microscopy that is used to show co-localization of GABA-A ρ2 and dopamine D2 receptors in GFAP-positive astrocytes in the mouse striatum. The addition of glycine, Triton X-100, Tween20 and hydrogen peroxide during antibody incubation steps is recommended in immunohistochemistry methods.
The ependymal glial cells (EGCs) from the periventricular zone of the cerebellum were studied to determine their distribution and the functional properties of their γ-aminobutyric acid type A (GABA(A) ) receptors. EGCs were identified by the presence of ciliated structures on their ventricular surface and their expression of glial fibrillary acidic protein (GFAP). Interestingly, diverse cell types, including neurons, astrocytes, and other types of glia, were identified in the subventricular zone by their current profiles. Electron microscopy showed ciliated cells and myelinated axons in this zone, but we found no collateral connections to suggest the presence of functional synapses. GABA-mediated currents were recorded from EGCs in cerebellar slices from postnatal days 13 to 35 (PN13-PN35). These currents were blocked by TPMPA (a highly specific GABA(A) ρ subunit antagonist) and bicuculline (a selective antagonist for classic GABA(A) receptors). Pentobarbital failed to modulate GABA(A)-mediated currents despite the expression of GABAα1 and GABAγ2 subunits. In situ hybridization, RT-PCR, and immunofluorescence studies confirmed GABAρ1 expression in EGCs of the cerebellum. We conclude that cerebellar EGCs express GABAρ1, which is functionally involved in GABA(A) receptor-mediated responses that are unique among glial cells of the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.