The use of molecules to control electron transport is an interesting possibility, not least because of the anticipated role of molecules in future electronic devices. But physical implementations using discrete molecules are neither conceptually simple nor technically straightforward (difficulties arise in connecting the molecules to the macroscopic environment). But the use of molecules in electronic devices is not limited to single molecules, molecular wires or bulk material. Here we demonstrate that molecules can control the electrical characteristics of conventional metal-semiconductor junctions, apparently without the need for electrons to be transferred onto and through the molecules. We modify diodes by adsorbing small molecules onto single crystals of n-type GaAs semiconductor. Gold contacts were deposited onto the modified surface, using a 'soft' method to avoid damaging the molecules. By using a series of multifunctional molecules whose dipole is varied systematically, we produce diodes with an effective barrier height that is tuned by the molecule's dipole moment. These barrier heights correlate well with the change in work function of the GaAs surface after molecular modification. This behaviour is consistent with that of unmodified metal-semiconductor diodes, in which the barrier height can depend on the metal's work function.
This paper describes a new concept in the way information can be protected at the molecular scale. By harnessing the principles of molecular Boolean logic, we have designed a molecular device that mimics the operation of an electronic keypad lock, e.g., a common security circuit used for numerous applications, in which access to an object or data is to be restricted to a limited number of persons. What distinguishes this lock from a simple molecular logic gate is the fact that its output signals are dependent not only on the proper combination of the inputs but also on the correct order by which these inputs are introduced. In other words, one needs to know the exact passwords that open this lock. The different password entries are coded by a combination of two chemical and one optical input signals, which can activate, separately, blue or green fluorescence output channels from pyrene or fluorescein fluorophores. The information in each channel is a single-bit light output signal that can be used to authorize a user, to verify authentication of a product, or to initiate a higher process. This development not only opens the way for a new class of molecular decision-making devices but also adds a new dimension of protection to existing defense technologies, such as cryptography and steganography, previously achieved with molecules.
We present "design rules" for the selection of molecules to achieve electronic control over semiconductor surfaces, using a simple molecular orbital model. The performance of most electronic devices depends critically on their surface electronic properties, i.e., surface band-bending and surface recombination velocity. For semiconductors, these properties depend on the density and energy distribution of surface states. The model is based on a surface state-molecule, HOMO-LUMO-like interaction between molecule and semiconductor. We test it by using a combination of contact potential difference, surface photovoltage spectroscopy, and time-and intensity-resolved photoluminescence measurements. With these, we characterize the interaction of two types of bifunctional dicarboxylic acids, the frontier orbital energy levels of which can be changed systematically, with air-exposed CdTe, CdSe, InP, and GaAs surfaces. The molecules are chemisorbed as monolayers onto the semiconductors. This model explains the widely varying electronic consequences of such interaction and shows them to be determined by the surface state energy position and the strength of the molecule-surface state coupling. The present findings can thus be used as guidelines for molecule-aided surface engineering of semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.