ML is an expanding field. It is popular as it allows efficient processing of vast amounts of data for interpreting and real-time decision making. Already widely used in imaging and diagnosis, it is believed that ML will also play an important role in surgery and interventional treatments. In particular, ML could become a game changer into the conception of cognitive surgical robots. Such robots endowed with cognitive skills would assist the surgical team also on a cognitive level, such as possibly lowering the mental load of the team. For example, ML could help extracting surgical skill, learned through demonstration by human experts, and could transfer this to robotic skills. Such intelligent surgical assistance would significantly surpass the state of the art in surgical robotics. Current devices possess no intelligence whatsoever and are merely advanced and expensive instruments.
Advances in miniaturized surgical instrumentation are key to less demanding and safer medical interventions. In cardiovascular procedures interventionalists turn towards catheter-based interventions, treating patients considered unfit for more invasive approaches. A positive outcome is not guaranteed. The risk for calcium dislodgement, tissue damage or even vessel rupture cannot be eliminated when instruments are maneuvered through fragile and diseased vessels. This paper reports on the progress made in terms of catheter design, vessel reconstruction, catheter shape modeling, surgical skill analysis, decision-making and control. These efforts are geared towards the development of the necessary technology to autonomously steer catheters through the vasculature, a target of the EU-funded project CASCADE (Cognitive AutonomouS CAtheters operating in Dynamic Environments). Whereas autonomous placement of an aortic valve implant forms the ultimate and concrete goal, the technology of individual building blocks to reach such ambitious goal is expected to be much sooner impacting and assisting interventionalists in their daily clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.