The inexplicable nature of food insecurity in parts of Uganda and worldwide necessitated an investigation into the nature, extent, and differentials of household food security. The main objective of this study was to examine the food security dynamics and model household food insecurity. The Rasch modelling approach was employed on a dataset from a sample of 1175 (Tororo = 577; Busia = 598) randomly selected households in the year 2010. All households provided responses to the food security questions and none was omitted from the analysis. At 5 percent level of significance the analysis indicated that Tororo district average food security assessment (0.137 ± 0.181) was lower than that for Busia district (0.768 ± 0.177). All the mean square fit statistics were in the range of 0.5 to 1.5, and none of them showed any signs of distortion, degradation, or less productivity for measurement. This confirmed that items used in this study were very productive for measurement of food security in the study area. The study recommends further analysis where item responses are ordered polytomous rather than the dichotomous item response functions used. Furthermore, consideration should be given to fit models that allow for different latent distributions for households with children and those without children and possibly other subgroups of respondents.
Micro-level measurement of food insecurity is a necessary approach towards a more feasible solution to the global problem for proper classification of households by food insecurity status. Measurement of food insecurity is a challenge because it is a multi-faceted latent and continuous phenomenon explained by a wide range of both quantitative and qualitative variables. In this paper, we examined the quantitative variables and applied exploratory factor analysis to identify which of them significantly influence household food insecurity. Logit models were then developed using the variables identified. Further, empirical data obtained from Tororo and Busia rural households in Uganda were used to fit the models. Four logit models based on four scenarios were developed and compared. The key findings pointed to the fact that if households were to be correctly analyzed and classified into the right food security category, a hybrid dependent variable that represents as many aspects of food insecurity as possible should be used. The model correctly classified 90 % of the combined households for two districts. However, when fitted for separate districts, it was established that 99% of households in Busia and 96% in Tororo district respectively, were found to be food insecure.
The sporadic and unstable nature of wind speed renders it very difficult to predict accurately to serve various decisions, such as safety in the air traffic flow and reliable power generation system. In this study we assessed the autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) models on the wind speed time series problem. Data on wind speed and minimum and maximum temperatures were evaluated. Wind speed was established to follow a time series that fluctuated around ARIMA (0,1,1) and ARIMA (1,1,1). The optimal ANN model was established at 10 hidden neurons. The performance indices considered all indicated that the ANN wind speed model was superior to the ARIMA model. Wind speed prediction accuracy can be improved to secure the safety of air traffic flow as well support the implementation of a reliable and secure power generation system at the airport.
BackgroundHealth is intertwined with human rights as is clearly reflected in the right to life. Promotion of health practices in the context of human rights can be accomplished if there is a better understanding of the level of human rights observance. In this paper, we evaluate and present an appraisal for a possibility of applying household survey to study the determinants of health and human rights and also derive the probability that human rights are observed; an important ingredient into the national planning framework.MethodsData from the Uganda National Governance Baseline Survey were used. A conceptual framework for predictors of a hybrid dependent variable was developed and both bivariate and multivariate statistical techniques employed. Multivariate post estimation computations were derived after evaluations of the significance of coefficients of health and human rights predictors.ResultsFindings, show that household characteristics of respondents considered in this study were statistically significant (p < 0.05) to provide a reliable assessment of human rights observance. For example, a unit increase of respondents’ schooling levels results in an increase of about 34% level of positively assessing human rights observance. Additionally, the study establishes, through the three models presented, that household assessment of health and human rights observance was 20% which also represents how much of the entire continuum of human rights is demanded.ConclusionFindings propose important evidence for monitoring and evaluation of health in the context human rights using household survey data. They provide a benchmark for health and human rights assessments with a focus on international and national development plans to achieve socio-economic transformation and health in society.
The coining of the expression free and fair was a good way towards evaluating elections, but fell short of qualifying its real quantification to guide an informed judgment; this paper provides guidance for such a definition. Data from the Uganda National Baseline Survey were used to assess the dynamics of the determinants for a free and fair election. All determinants were statistically significant (p<0.01) for the two multinomial models (free and fair election models). The predicted probabilities for free and fair were each used as inputs to form probability distribution function could jointly define the expression free and fair using a bivariate normal distribution. A strong positive correlation was identified between an election being free and fair (ρ=0.9693,p<0.01) implying the reliability of the statistical models in jointly considering free and fair. The study recommends development of central statistical computational system to inform electoral bodies and judges in passing scientifically backed ruling on whether an election is free and fair. A threshold percentage for any election to be referred to as free and fair could be developed either deterministically or stochastically and provisions of which passed under electoral law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.