Seismic images are data collected by sending seismic waves to the earth subsurface, recording the reflection and providing subsurface structural information. Seismic attributes are quantities derived from seismic data and provide complementary information. Enhancing seismic images by fusing them with seismic attributes will improve the subsurface visualization and reduce the processing time. In seismic data interpretation, fusion techniques have been used to enhance the resolution and reduce the noise of a single seismic attribute. In this paper, we investigate the enhancement of 3D seismic images using image fusion techniques and neural networks to combine seismic attributes. The paper evaluates the feasibility of using image fusion models pretrained on specific image fusion tasks. These models achieved the best results on their respective tasks and are tested for seismic image fusion. The experiments showed that image fusion techniques are capable of combining up to three seismic attributes without distortion, future studies can increase the number. This is the first study conducted using pretrained models on other types of images for seismic image fusion and the results are promising.
Seismic exploration involves estimating the properties of the Earth's subsurface from reflected seismic waves then visualizing the resulting seismic data and its attributes. These data and derived seismic attributes provide complementary information and reduce the amount of time and effort for the geoscientist. Multiple conventional methods to combine various seismic attributes exist, but the number of attributes is always limited, and the quality of the resulting image varies. This paper proposes a method that can be used to overcome these limitations. In this paper, we propose using Deep Learning-based image fusion models to combine seismic attributes. By using convolutional neural network (CNN) capabilities in feature extraction, the resulting image quality is better than that obtained with conventional methods. This work implemented two models and conducted a number of experiments using them. Several techniques have been used to evaluate the results, such as visual inspection, and using image fusion metrics. The experiments show that the Image-fusion Framework, using the Image Fusion Framework Based on CNN (IFCNN) approach, outperformed all other models in both quantitative and visual analysis. Its QAB/F and MS-SSIM scores are 50% and 10%, respectively, higher than all other models. Also, IFCNN was evaluated against the current state-of-the-art solution, Octree, in a comparative study. IFCNN overcomes the limitation of the Octree method and succeeds in combining nine seismic attributes with a better-combining quality, with QAB/F and NAB/F scores being 40% higher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.