Objective The influence of different light-emitting diode (LED) curing light intensities on the degree of conversion (DC) and volumetric polymerization shrinkage (VPS) of bulk-fill resin-based composite (RBC) restorative materials was evaluated.
Materials and Methods Twenty-four specimens of each RBC material (Filtek one bulk-fill posterior, Reveal HD Bulk, Tetric N-Ceram, and Filtek Z350) were prepared. The RBCs were shaped in molds and cured using an LED curing light unit at high-intensity (1,200 mW/cm2) for 20 seconds and low-intensity (650 mW/cm2) for 40 seconds Fourier-transform infrared (FTIR) spectroscopy was used to determine the DC and microcomputed tomography was used to evaluate VPS. Data were analyzed using one- and two-way ANOVA, independent t-test, and Tukey’s and Scheffe’s post hoc multiple comparison tests.
Results With high-intensity curing light, Reveal HD showed the highest DC (85.689 ± 6.811%) and Tetric N-Ceram the lowest (52.60 ± 9.38%). There was no statistical difference in VPS when using high- or low-intensity curing light. The highest VPS was observed for Reveal HD (2.834–3.193%); there was no statistical difference (p > 0.05) among the other RBCs.
Conclusion Curing light intensities do not significantly influence the VPS of RBC materials. Reveal HD bulk cured with high-intensity light had the highest DC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.