Deser and Nepomechie established a relationship between masslessness and rigid conformal invariance by coupling to a background metric and demanding local Weyl invariance, a method which applies neither to massive theories nor theories which rely upon gauge invariances for masslessness. We extend this method to describe massive and gauge invariant theories using Weyl invariance. The key idea is to introduce a new scalar field which is constant when evaluated at the scale corresponding to the metric of physical interest. This technique relies on being able to efficiently construct Weyl invariant theories. This is achieved using tractor calculus-a mathematical machinery designed for the study of conformal geometry. From a physics standpoint, this amounts to arranging fields in multiplets with respect to the conformal group but with novel Weyl transformation laws. Our approach gives a mechanism for generating masses from Weyl weights. BreitenlohnerFreedman stability bounds for Anti de Sitter theories arise naturally as do direct derivations of the novel Weyl invariant theories given by Deser and Nepomechie. In constant curvature spaces, partially massless theories-which rely on the interplay between mass and gauge invariance-are also generated by our method. Another simple consequence is conformal invariance of the maximal depth partially massless theories. Detailed examples for spins s ≤ 2 are given including tractor and component actions, on-shell and off-shell approaches and gauge invariances. For all spins s ≥ 2 we give tractor equations of motion unifying massive, massless, and partially massless theories.
By a uniform and simple Weyl invariant coupling of scale and matter fields, we construct theories that unify massless, massive, and partially massless excitations. Masses are related to tractor Weyl weights, and Breitenlohner-Freedman stability bounds in anti de Sitter amount to reality of these weights. The method relies on tractor calculus -mathematical machinery allowing Weyl invariance to be kept manifest at all stages. The equivalence between tractor and higher spin systems with arbitrary spins and masses is also considered.
We extend our program, of coupling theories to scale in order to make their Weyl invariance manifest, to include interacting theories, fermions and supersymmetric theories. The results produce mass terms coinciding with the standard ones for universes that are Einstein, but are novel in general backgrounds. They are generalizations of the gravitational couplings of a conformally improved scalar to fields with general scaling and tensor properties. The couplings we find are more general than just trivial ones following from the conformal compensating mechanisms. In particular, in the setting where a scale gauge field (or dilaton) is included, masses correspond to Weyl weights of fields organized in "tractor" multiplets. Breitenlohner-Freedman bounds follow directly from reality of these weights. Moreover, massive, massless and partially massless theories are handled in a uniform framework. Also, bona fide Weyl invariant theories (invariant without coupling to scale) can be directly derived in this approach. The results are based on the tractor calculus approach to conformal geometry, in particular we show how to handle fermi fields, supersymmetry and Killing spinors using tractor techniques. Another useful consequence of the construction is that it automatically produces the (anti) de Sitter theories obtained by log-radial reduction of Minkowski theories in one higher dimension. Theories presented in detail include interacting scalars, spinors, Rarita-Schwinger fields, and the interacting Wess-Zumino model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.