This paper proposes a new multi-input brushless DC motor current control policy aimed at robotics applications. The controller achieves empirical improvements in steady-state torque and power-production abilities relative to conventional controllers, while retaining similarly good torque-tracking and stability characteristics. Simulations show that non-conventional motor design optimizations whose feasibility is established by scaling model extrapolations from existing motor catalogues can vastly amplify the effectiveness of this new control-strategy.
Purpose: For children with mobility impairments, without cognitive delays, who want to participate in outdoor activities, existing assistive technology (AT) to support their needs are limited. In this review, we investigate the control and design of a selection of robotic walkers while exploring a selection of legged robots to develop solutions that address this gap in robotic AT. Method: We performed a comprehensive literature search from four main databases: PubMed, Google Scholar, Scopus, and IEEE Xplore. The keywords used in the search were the following: "walker", "rollator", "smart walker", "robotic walker", "robotic rollator". Studies were required to discuss the control or design of robotic walkers to be considered. A total of 159 papers were analyzed. Results: From the 159 papers, 127 were excluded since they failed to meet our inclusion criteria. The total number of papers analyzed included publications that utilized the same device, therefore we classified the remaining 32 studies into groups based on the type of robotic walker used. This paper reviewed 15 different types of robotic walkers. Conclusions: The ability of many legged robots to negotiate and transition between a range of unstructured substrates suggests several avenues of future consideration whose pursuit could benefit robotic AT, particularly regarding the present limitations of wheeled pediatric robotic walkers for children's daily outside use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.