A new SERM, CHF 4227.01, given to 6-month-old female rats immediately after ovariectomy, preserved bone mass and bone microarchitecture without affecting uterus weight. It also decreased serum cholesterol and fat mass in estrogen-deficient rats. Introduction:We tested the effect of a new benzopyran derivative, CHF 4227.01, with selective estrogen receptor modulator (SERM) activity on bone mass and biomechanics in ovariectomized (OVX) female rats in comparison with 17␣-ethinylestradiol (EST), raloxifene (RLX), and lasofoxifene (LFX). Materials and Methods: Four doses of CHF 4227.01 (0.001, 0.01, 0.1, and 1 mg/kg body weight [bw]/day) were administered in OVX animals daily by gavage 5 days/week for 4 months. EST was administered at a dose of 0.1 mg/kg bw/day, whereas RLX and LSX were administered at doses of 1 and 0.1 mg/kg bw/day, respectively, by gavage. In one group (Sham), rats were operated but the ovaries not removed; another OVX group was treated only with placebo. Results and Conclusions: Treatment with CHF 4227.01 (1.0 and 0.1 mg/kg bw), EST (0.1 mg/kg bw), LFX (0.1 mg/kg bw), or RLX (1.0 mg/kg bw) prevented bone loss on the lumbar spine and the proximal femur assessed in vivo by DXA. Volumetric BMD obtained by pQCT ex vivo confirmed protection from bone loss in the spine and proximal femur among rats treated with CHF 4227.01. This effect was associated with strong inhibition of bone resorption both histologically and biochemically. Furthermore, CHF 4227.01 preserved trabecular microarchitecture, analyzed by CT, and maintained biomechanical indices of bone strength in the spine and proximal femur, effects also observed for RLX, whereas LSX was less protective of microarchitecture. CHF 4227.01 treatment did not affect uterine weight, prevented the increase in body weight and fat mass seen in OVX animals, and decreased serum cholesterol to below the average of intact animals. In conclusion, CHF 4227.01 exhibits a promising therapeutic and safety profile as a new SERM on both skeletal and extraskeletal outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.