The need for sheet metal forming using reconfigurable dies has increased due to rapid changes in part design to meet customer requirements, especially in the automotive industry. Reconfigurable dies have relatively low manufacturing cost compared with solid dies, and the same tool can be readily changed to produce different parts. Previous investigations have focused on avoiding defects without taking into account the effects of process on the quality characteristics of fabricated parts. This study investigated the influence of parameters, such as the elastic cushion thickness, coefficient of friction, pin size and radius of curvature, on the quality of parts formed in a flexible multi-point stamping die. The aim was to determine the optimum values of those parameters. Finite element modelling was employed to simulate the multi-point forming of hemispherical parts. Using the response surface method, the effects of process parameters on wrinkling, deviation from the target shape and thickness variation were investigated and the process parameters yielding the best product quality characteristics were obtained. The results show that pin size and radius of curvature have the greatest influence on wrinkling and deviation between formed and target shapes, while coefficient of friction, pin size and radius of curvature significantly affect thickness variation.
There is a growing demand for flexible manufacturing techniques that meet the rapid changes in production technology, processes and innovations. Multipoint forming (MPF) is a flexible sheet metal forming technique where a reconfigurable die can be readily changed to produce various shapes. Parts produced using MPF suffer from geometrical defects such as wrinkling, dimpling and thickness variations. In this paper, a multipoint forming process using a novel mesh-type elastic cushion was proposed in order to improve the quality of the deformed sheet and to minimise the developed defects. Finite element modelling (FEM) and design of experiments (DoE) were used to study the influence of the mesh-type elastic cushion parameters such as the type and the size of the mesh, and the thickness of the cushion on the wrinkling, deviation and thickness variations of the deformed sheet. The results showed that using elastic cushion with square meshes of a size of 3.5 mm and a thickness of 3 mm reduced the wrinkling from 3.18 to 1.98 mm, while the thickness variation improved from 98 to 19 μm. Finally, the deviation from target shape reduced from 1.7848 to 0.0358 mm.
Due to the need for low-cost tooling and quality parts, a new technique has been developed which brings together the benefits of both multi-point forming (MPF) and rubber-pad forming. A significant disadvantage of MPF is the time required to adjust the heights of the pins in the upper and lower matrices and align the tools. Rubber forming achieves flexibility by replacing one of the MPF pin matrices by an elastic punch. In this study, polyurethane (PU) rubber with a Shore hardness of A90 was adopted as the elastic punch material. The punch was combined with a reconfigurable MPF die to reduce both tool cost and time to set the pins to produce doubly curved parts of acceptable quality. Experimental work has been carried out to confirm the validity of the new technique. Finite element modelling (FEM) using the ABAQUS software was applied to study stress distribution numerically in the formed parts at the end of the forming process. The amounts of wrinkling and springback were employed as criteria to evaluate the quality of the formed part and to compare the results of the current (semi-MPF) approach against full-MPF results. The major outcomes of this study were time and cost reductions of at least 50% with the added benefits that there is a significant decrease in wrinkling and springback in the final formed part even without using a blank holder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.