The modern dentifrice industry needs non-toxic materials able to adhere to dentin, occlude dentinal tubules, hold pharmacons at the surface of dentin, and release them on demand to the location the tooth needs them most. Novel dental materials loaded with eugenol or fluoride-ions examined for the release of the pharmacon in an aqueous suspension efficiently adhere to the surface of human dentin and occlude dentinal tubules as evidenced by Scanning Electron Microscopy (SEM). Ultraviolet-visible (UV-vis) absorption spectroscopy and a fluoride-selective electrode quantified the release of pharmacons. The surface modification with casein stabilizes micro- and nanoparticles of calcium carbonate in aqueous suspensions, enabling their application in dentifrices. The ability of particles to hold and release eugenol depends on their morphology and composition, with the casein-coated calcium carbonate microspheres being the most acid-sensitive and most promising for dentifrice applications. The novel material releases fluoride under physiologically low pH, regardless of the presence of other ingredients of the artificial saliva, which sustains the bulk fluoride concentration comparable with most fluorinated toothpastes. Low pH-triggered release mechanisms selectively supply the drug to the areas that need it most, reducing the overall dose and ushering in a new type of targeted dentifrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.