Given a homogeneous ideal I⊆k[x0,…,xn], the Containment problem studies the relation between symbolic and regular powers of I, that is, it asks for which pairs m,r∈N, I(m)⊆Ir holds. In the last years, several conjectures have been posed on this problem, creating an active area of current interests and ongoing investigations. In this paper, we investigated the Stable Harbourne Conjecture and the Stable Harbourne–Huneke Conjecture, and we show that they hold for the defining ideal of a Complement of a Steiner configuration of points in Pkn. We can also show that the ideal of a Complement of a Steiner Configuration of points has expected resurgence, that is, its resurgence is strictly less than its big height, and it also satisfies Chudnovsky and Demailly’s Conjectures. Moreover, given a hypergraph H, we also study the relation between its colourability and the failure of the containment problem for the cover ideal associated to H. We apply these results in the case that H is a Steiner System.
We introduce an invariant, associated to a coherent sheaf over a projective morphism of schemes, which controls when sheaf cohomology can be passed through the given morphism. We then use this invariant to estimate the stability indexes of the regularity and a * -invariant of powers of homogeneous ideals. Specifically, for an equigenerated homogeneous ideal I in a standard graded algebra over a Noetherian ring, we give bounds for the smallest values of power q starting from which a * (I q ) and reg(I q ) become linear functions.
Given a homogeneous ideal I ⊆ k[x 0 , . . . , xn], the Containment problem studies the relation between symbolic and regular powers of I, that is, it asks for which pair m, r ∈ N, I (m) ⊆ I r holds. In the last years, several conjectures have been posed on this problem, creating an active area of current interests and ongoing investigations. In this paper, we investigated the Stable Harbourne Conjecture and the Stable Harbourne -Huneke Conjecture and we show that they hold for the defining ideal of a Complement of a Steiner configuration of points in P n k . We can also show that the ideal of a Complement of a Steiner Configuration of points has expected resurgence, that is, its resurgence is strictly less than its big height, and it also satisfies Chudnovsky and Demailly's Conjectures. Moreover, given a hypergraph H, we also study the relation between its colourability and the failure of the containment problem for the cover ideal associated to H. We apply these results in the case that H is a Steiner System.
We investigate the resurgence and asymptotic resurgence numbers of fiber products of projective schemes. Particularly, we show that while the asymptotic resurgence number of the k-fold fiber product of a projective scheme remains unchanged, its resurgence number could strictly increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.