Cancer is one of the most leading causes of death and a major public health problem, universally. According to accumulated data, every year, approximately 8.5 million people died because of the lethality of cancer. Recently, a new RNA domain-containing endonuclease-based genome engineering technology, namely the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-9 (Cas9) have been proved as a powerful technique in the treatment of cancer due to its multifunctional properties including high specificity, accuracy, time reducing and cost-effective strategies with minimum off-target effects. The present review investigates the overview of recent studies on the newly developed genome-editing strategy, CRISPR/Cas9, as an excellent pre-clinical therapeutic option in the reduction and identification of new tumor target genes in the solid tumors. Based on accumulated data, we revealed that CRISPR/Cas9 significantly inhibited the robust tumor cell growth (breast, lung, liver, colorectal, and prostate) by targeting the oncogenes, tumor-suppressive genes, genes associated to therapies by inhibitors, and genes associated to chemotherapies drug resistance, and suggested that CRISPR/Cas9 could be a potential therapeutic target in inhibiting the tumor cell growth by suppressing the cell-proliferation, metastasis, invasion and inducing the apoptosis during the treatment of malignancies in the near future. The present review also discussed the current challenges, and barriers and proposed future recommendations for a better understanding.
The emission of CO2 has been increasing day by day by growing world population, which resulted in the atmospheric and environmental destruction. Conventionally different strategies; including nuclear power and geothermal energy have been adopted to convert atmospheric CO2 to hydrocarbon fuels. However, these methods are very complicated due to large amount of radioactive waste from the reprocessing plant. The present study investigated the effect of various parameters like temperature (200-500 o C), applied voltage (1.5-3.0 V), and feed gas (CO2/H2O) composition of 1, 9.2, and 15.6 in hydrocarbon fuel formation in molten carbonate (Li2CO3-Na2CO3-K2CO3; 43.5:31.5:25 mol%) and hydroxide (LiOH-NaOH; 27:73 and KOH-NaOH; 50:50 mol%) salts. The GC results reported that CH4 was the predominant hydrocarbon product with a lower CO2/H2O ratio (9.2) at 275 o C under 3 V in molten hydroxide (LiOH-NaOH). The results 2 also showed that by increasing electrolysis temperature from 425 to 500 o C, the number of carbon atoms in hydrocarbon species rose to 7 (C7H16) with a production rate of 1.5 μmol/h cm 2 at CO2/H2O ratio of 9.2. Moreover, the electrolysis to produce hydrocarbons in molten carbonates was more feasible at 1.5 V than 2 V due to the prospective carbon formation. While in molten hydroxide, the CH4 production rate (0.80-20.40 µmol/h cm 2 ) increased by increasing the applied voltage from 2.0-3.0 V despite the reduced current efficiencies (2.30 to 0.05%). The maximum current efficiency (99.5%) was achieved for H2 as a by-product in molten hydroxide (LiOH-NaOH; 27:73 mol%) at 275 o C, under 2 V and CO2/H2O ratio of 1. Resultantly, the practice of molten salts could be a promising and encouraging technology for further fundamental investigation for hydrocarbon fuel formation due to its fast-electrolytic conversion rate and no utilization of catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.