Ischemia−reperfusion (I/R) injury is a disease process that affects several vital organs. There is widespread agreement that the NLRP3 inflammasome pathway plays a crucial role in the development of I/R injury. We have developed transferrinconjugated, pH-responsive nanomicelles for the entrapment of MCC950 drug. These nanomicelles specifically bind to the transferrin receptor 1 (TFR1) expressed on the cells of the blood−brain barrier (BBB) and thus help the cargo to cross the BBB. Furthermore, the therapeutic potential of nanomicelles was assessed using in vitro, in ovo, and in vivo models of I/R injury. Nanomicelles were injected into the common carotid artery (CCA) of a middle cerebral artery occlusion (MCAO) rat model to achieve maximum accretion of nanomicelles into the brain as blood flows toward the brain in the CCA. The current study reveals that the treatment with nanomicelles significantly alleviates the levels of NLRP3 inflammasome biomarkers which were found to be increased in oxygen−glucose deprivation (OGD)-treated SH-SY5Y cells, the I/Rdamaged right vitelline artery (RVA) of chick embryos, and the MCAO rat model. The supplementation with nanomicelles significantly enhanced the overall survival of MCAO rats. Overall, nanomicelles exerted therapeutic effects against I/R injury, which might be due to the suppression of the activation of the NLRP3 inflammasome.
Stem cell therapies have emerged as a promising treatment strategy for various diseases characterized by ischemic injury such as ischemic stroke. Cell survival after transplantation remains a critical issue. We investigated the impact of oxidative stress, being typically present in ischemically challenged tissue, on human dental pulp (hDPSC) and mesenchymal stem cell (hMSC). We used oxygen-glucose deprivation (OGD) to induce oxidative stress in hDPSC and hMSC. OGD-induced generation of O2 •− or H2O2 enhanced autophagy by inducing the expression of Activating Molecule in BECN1-Regulated Autophagy Protein 1 (Ambra1) and Beclin1 in both cell types. However, hDPSC and hMSC pre-conditioning using reactive oxygen species (ROS) scavengers significantly repressed the expression of Ambra1 and Beclin1 and inactivated autophagy. O2 •− or H2O2 acted upstream of autophagy, and the mechanism was unidirectional. Further, our findings revealed ROS-p38-Erk1/2 involvement. Pre-treatment with selective inhibitors of p38 and Erk1/2 pathways (SB202190 and PD98059) reversed OGD effects on the expression of Ambra1 and Beclin1, suggesting that these pathways induced oxidative stress-mediated autophagy. SIRT3 depletion was found to be associated with increased oxidative stress and activation of p38 and Erk1/2 MAPKs pathways. Global ROS inhibition by NAC or a combination of polyethylene glycol-superoxide dismutase (PEG-SOD) and polyethylene glycol-catalase (PEG-catalase) further confirmed that O2 •− or H2O2 or a combination of both impacts stems cell viability by inducing autophagy. Further, autophagy inhibition by 3-Methyladenine (3-MA) significantly improved hDPSC viability. These findings contribute to a better understanding of post-transplantation hDPSC and hMSC death and may inform strategies to minimize therapeutic cell loss under oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.