Skin cancer is one of the most dangerous types of cancers that affect millions of people every year. The detection ofskin cancer in the early stages is an expensive and challenging process. In recent studies, machine learning-basedmethods help dermatologists in classifying medical images. This paper proposes a deep learning-based modelto detect and classify skin cancer using the concept of deep Convolution Neural Network (CNN). Initially, wecollected a dataset that includes four skin cancer image data before applying them in augmentation techniques toincrease the accumulated dataset size. Then, we designed a deep CNN model to train our dataset. On the test data,our model receives 95.98% accuracy that exceeds the two pre-train models, GoogleNet by 1.76% and MobileNetby 1.12%, respectively. The proposed deep CNN model also beats other contemporaneous models while beingcomputationally comparable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.