BackgroundKlebsiella pneumoniae (K. pneumoniae) is a common cause of health-care associated infections (HAIs) and has high levels of antibiotic resistance. These bacteria are well-known for their ability to produce biofilm. The purpose of this study was to identify the antibiotic resistance pattern and biofilm-producing capacity of K. pneumoniae isolated from clinical samples in a tertiary care hospital in Klaten, Indonesia.MethodsK. pneumoniae was isolated from inpatients in Soeradji Tirtonegoro Hospital Klaten from June 2017 to May 2018. Identification of K. pneumoniae isolate was done by analyzing colony morphology, microscopic examination, and by performing biochemical testing. Testing of antibiotics susceptibility and biofilm-producing capacity used the Kirby-Bauer disk diffusion method and adherence quantitative assays, respectively.ResultsA total of 167 (17.36%) K. pneumoniae isolates were isolated from 962 total clinical bacterial isolates during the study. Most of them were collected from patients aged more than 60 years old and were mainly obtained from respiratory specimens (51.50%). Most of K. pneumoniae isolates were extensively resistant to antibiotics. A more favorable profile was found only towards meropenem, amikacin, and piperacillin-tazobactam, showing 1.20%; 4.79% and 10.53% of resistance, respectively. The overall proportion of multidrug-resistant K. pneumoniae isolates was 54.49%. In addition, 148 (85.63%) isolates were biofilm producers, with 45 (26.95%) isolates as strong, 48 (28.74%) isolates as moderate, and 50 (29.94%) isolates as weak biofilm producers.ConclusionMost of the K. pneumoniae isolates demonstrated resistance to a wide range of antibiotics and are biofilm producers.
Staphylococcus epidermidis is notorious for its biofilm formation on medical devices, and novel approaches to prevent and kill S. epidermidis biofilms are desired. In this study, the effect of cinnamon oil on planktonic and biofilm cultures of clinical S. epidermidis isolates was evaluated. Initially, susceptibility to cinnamon oil in planktonic cultures was compared to the commonly used antimicrobial agents chlorhexidine, triclosan, and gentamicin. The MIC of cinnamon oil, defined as the lowest concentration able to inhibit visible microbial growth, and the minimal bactericidal concentration, the lowest concentration required to kill 99.9% of the bacteria, were determined using the broth microdilution method and plating on agar. A checkerboard assay was used to evaluate the possible synergy between cinnamon oil and the other antimicrobial agents. The effect of cinnamon oil on biofilm growth was studied in 96-well plates and with confocal laser-scanning microscopy (CLSM). Biofilm susceptibility was determined using a metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Real-time PCR analysis was performed to determine the effect of sub-MIC concentrations of cinnamon oil on expression of the biofilm-related gene, icaA. Cinnamon oil showed antimicrobial activity against both planktonic and biofilm cultures of clinical S. epidermidis strains. There was only a small difference between planktonic and biofilm MICs, ranging from 0.5 to 1% and 1 to 2%, respectively. CLSM images indicated that cinnamon oil is able to detach and kill existing biofilms. Thus, cinnamon oil is an effective antimicrobial agent to combat S. epidermidis biofilms.
GM1-ganglioside receptor binding by the B subunit of cholera toxin (CtxB) is widely accepted to initiate toxin action by triggering uptake and delivery of the toxin A subunit into cells. More recently, GM1 binding by isolated CtxB, or the related B subunit of Escherichia coli heat-labile enterotoxin (EtxB), has been found to modulate leukocyte function, resulting in the down-regulation of proinflammatory immune responses that cause autoimmune disorders such as rheumatoid arthritis and diabetes. Here, we demonstrate that GM1 binding, contrary to expectation, is not sufficient to initiate toxin action. We report the engineering and crystallographic structure of a mutant cholera toxin, with a His to Ala substitution in the B subunit at position 57. Whereas the mutant retained pentameric stability and high affinity binding to GM1-ganglioside, it had lost its immunomodulatory activity and, when part of the holotoxin complex, exhibited ablated toxicity. The implications of these findings on the mode of action of cholera toxin are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.