Cure rates for kidney cancer vary according to stage and grade; hence, accurate diagnostic procedures for early detection and diagnosis are crucial. Some difficulties with manual segmentation have necessitated the use of deep learning models to assist clinicians in effectively recognizing and segmenting tumors. Deep learning (DL), particularly convolutional neural networks, has produced outstanding success in classifying and segmenting images. Simultaneously, researchers in the field of medical image segmentation employ DL approaches to solve problems such as tumor segmentation, cell segmentation, and organ segmentation. Segmentation of tumors semantically is critical in radiation and therapeutic practice. This article discusses current advances in kidney tumor segmentation systems based on DL. We discuss the various types of medical images and segmentation techniques and the assessment criteria for segmentation outcomes in kidney tumor segmentation, highlighting their building blocks and various strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.