Lead(II) adsorption to soil organic matter and iron (hydr)oxides is strong, and may control the geochemical behaviour of this metal. Here, we report the adsorption of Pb(2+) (i) to 2-line ferrihydrite, and (ii) to a mor layer. The results showed that ferrihydrite has heterogeneous Pb(2+) binding. Use of a surface complexation model indicated that similar to 1% of the surface sites adsorbed Pb(2+) more strongly than the remaining 99 %. Although only one surface complexation reaction was used (a bidentate complex of the composition (equivalent to FeOH)(2)Pb(+)), three classes of sites with different affinity for Pb(2+) were needed to simulate Pb(2+) binding correctly over all Pb/Fe ratios analysed. For the mor layer, Pb(2+) sorption was much stronger than current models for organic complexation suggest. The results could be described by the Stockholm Humic Model when the binding heterogeneity was increased, and when it was assumed that 0.2% of the binding sites were specific for Pb. Use of revised model parameters for nine Vietnamese soils suggest that lead(II) binding was more correctly simulated than before. Thus, underestimation of lead(II) sorption to both (hydr) oxide surfaces and organic matter may explain the failure of previous geochemical modelling attempts for lead(II). QC 20111103
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.