A prognostic approach based on a MISO (multiple inputs and single output) fuzzy logic model was introduced to estimate the pressure difference across a gas turbine (GT) filter house in a heavy-duty power generation system. For modelling and simulation of clogging of the GT filter house, nine real-time process variables (ambient temperature, humidity, ambient pressure, GT produced load, inlet guide vane position, airflow rate, wind speed, wind direction and PM10 dust concentration) were fuzzified using a graphical user interface within the framework of an artificial intelligence-based methodology. The results revealed that the proposed fuzzy logic model produced very small deviations and showed a superior predictive performance than the conventional multiple regression methodology, with a very high determination coefficient of 0.974. A complicated dynamic process, such as clogging phenomenonin heavy-duty GT system, was successfully modelled due to high capability of the fuzzy logic-based prognostic approach in capturing the nonlinear interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.