PurposeThis research study proposes a feature-centric spam email detection model (FSEDM) based on content, sentiment, semantic, user and spam-lexicon features set. The purpose of this study is to exploit the role of sentiment features along with other proposed features to evaluate the classification accuracy of machine learning algorithms for spam email detection.Design/methodology/approachExisting studies primarily exploits content-based feature engineering approach; however, a limited number of features is considered. In this regard, this research study proposed a feature-centric framework (FSEDM) based on existing and novel features of email data set, which are extracted after pre-processing. Afterwards, diverse supervised learning techniques are applied on the proposed features in conjunction with feature selection techniques such as information gain, gain ratio and Relief-F to rank most prominent features and classify the emails into spam or ham (not spam).FindingsAnalysis and experimental results indicated that the proposed model with sentiment analysis is competitive approach for spam email detection. Using the proposed model, deep neural network applied with sentiment features outperformed other classifiers in terms of classification accuracy up to 97.2%.Originality/valueThis research is novel in this regard that no previous research focuses on sentiment analysis in conjunction with other email features for detection of spam emails.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.