In this paper, the Ritz method is developed for the analysis of thin rectangular orthotropic plates undergoing large deflection. The trial functions approximating the plate lateral and in-plane displacements are represented by simple polynomials. The nonlinear algebraic equations resulting from the application of the concept of minimum potential energy of the orthotropic plate are cast in a matrix form. The developed matrix form equations are then implemented in a Mathematica code that allows for the automation of the solution for an arbitrary number of the trial polynomials. The developed code is tested through several numerical examples involving rectangular plates with different aspect ratios and boundary conditions. The results of all examples demonstrate the efficiency and accuracy of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.