Renal ischemia/reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), and at present, there is a lack of reliable biomarkers that can diagnose AKI and measure early progression because the commonly used methods cannot evaluate single-kidney IRI. Hyperpolarized [1,4-13C2]fumarate conversion to [1,4-13C2]malate by fumarase has been proposed as a measure of necrosis in rat tumor models and in chemically induced AKI rats. Here we show that the degradation of cell membranes in connection with necrosis leads to elevated fumarase activity in plasma and urine and secondly that hyperpolarized [1,4-13C2]malate production 24 h after reperfusion correlates with renal necrosis in a 40-min unilateral ischemic rat model. Fumarase activity screening on bio-fluids can detect injury severity, in bilateral as well as unilateral AKI models, differentiating moderate and severe AKI as well as short- and long-term AKI. Furthermore after verification of renal injury by bio-fluid analysis the precise injury location can be monitored by in vivo measurements of the fumarase activity non-invasively by hyperpolarized [1,4-13C]fumarate MR imaging. The combined in vitro and in vivo biomarker of AKI responds to the essential requirements for a new reliable biomarker of AKI.
A co-polarization scheme for [1,4- C ]fumarate and [1- C]pyruvate is presented to simultaneously assess necrosis and metabolism in rats with hyperpolarized C magnetic resonance (MR). The co-polarization was performed in a SPINlab polarizer. In addition, the feasibility of simultaneous positron emission tomography (PET) and MR of small animals with a clinical PET/MR scanner is demonstrated. The hyperpolarized metabolic MR and PET was demonstrated in a rat model of necrosis. The polarization and T of the co-polarized [1,4- C ]fumarate and [1- C]pyruvate substrates were measured in vitro and compared with those obtained when the substrates were polarized individually. A polarization of 36 ± 4% for fumarate and 37 ± 6% for pyruvate was obtained. We found no significant difference in the polarization and T values between the dual and single substrate polarization. Rats weighing about 400 g were injected intramuscularly in one of the hind legs with 200 μL of turpentine to induce necrosis. Two hours later, C metabolic maps were obtained with a chemical shift imaging sequence (16 × 16) with a resolution of 3.1 × 5.0 × 25.0 mm . The C spectroscopic images were acquired in 12 s, followed by an 8-min F-2-fluoro-2-deoxy-d-glucose ( F-FDG) PET acquisition with a resolution of 3.5 mm. [1,4- C ]Malate was observed from the tissue injected with turpentine indicating necrosis. Normal [1- C]pyruvate metabolism and F-FDG uptake were observed from the same tissue. The proposed co-polarization scheme provides a means to utilize multiple imaging agents simultaneously, and thus to probe various metabolic pathways in a single examination. Moreover, it demonstrates the feasibility of small animal research on a clinical PET/MR scanner for combined PET and hyperpolarized metabolic MR.
Here, we developed a symmetric echo-planar spectroscopic imaging (EPSI) sequence for hyperpolarized 13C imaging on a clinical hybrid positron emission tomography/magnetic resonance imaging system. The pulse sequence uses parallel reconstruction pipelines to separately reconstruct data from odd-and-even gradient echoes to reduce artifacts from gradient imbalances. The ramp-sampled data in the spatiotemporal frequency space are regridded to compensate for the chemical-shift displacements. Unaliasing of nonoverlapping peaks outside of the sampled spectral width was performed to double the effective spectral width. The sequence was compared with conventional phase-encoded chemical-shift imaging (CSI) in phantoms, and it was evaluated in a canine cancer patient with ameloblastoma after injection of hyperpolarized [1-13C]pyruvate. The relative signal-to-noise ratio of EPSI with respect to CSI was 0.88, which is consistent with the decrease in sampling efficiency due to ramp sampling. Data regridding in the spatiotemporal frequency space significantly reduced spatial blurring compared with direct fast Fourier transform. EPSI captured the spatial distributions of both metabolites and their temporal dynamics in vivo with an in-plane spatial resolution of 5 × 9 mm2 and a temporal resolution of 3 seconds. Significantly higher spatial and temporal resolution for delineating anatomical structures in vivo was achieved for EPSI metabolic maps than for CSI maps, which suffered spatiotemporal blurring. The EPSI sequence showed promising results in terms of short acquisition time and sufficient spectral bandwidth of 500 Hz, allowing to adjust the trade-off between signal-to-noise ratio and encoding speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.