Shape adjustment and stress control can be considered as one of the effective parameters in prestressed cable structures since such structures are widely constructed nowadays due to their characteristics. The assembly errors and applied loads hugely affect the cables’ nodal positions and stress due to their delicacy. The former could disturb the shape, which affects the appearance and the function of the structure. In contrast, the latter may increase the stress in some cables above the upper limit or induce slack in some others. Accordingly, a technique has been proposed that combined fmincon optimization that relies on four different algorithms with a controlling approach based on the force method. The presented method aims to minimize the total amount of actuation and miniaturize the number of actuators. The targets of previously confirmed techniques can be obtained with less actuation and fewer actuators by using the current technique. Based on the verified examples, the advantage of the current approach over the quoted methods is up to 55% and 37% in terms of the number of actuators and the total amount of actuation, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.