In dealing with the lack of sufficient annotated data and in contrast to supervised learning, unsupervised, selfsupervised, and semi-supervised domain adaptation methods are promising approaches, enabling us to transfer knowledge from rich labeled source domains to different (but related) unlabeled target domains, reducing distribution discrepancy between the source and target domains. However, most existing domain adaptation methods do not consider the imbalanced nature of the real-world data, affecting their performance in practice. We propose to overcome this limitation by proposing a novel domain adaptation approach that includes two modifications to the existing models. Firstly, we leverage the focal loss function in response to class-imbalanced labeled data in the source domain. Secondly, we introduce a novel co-training approach to involve pseudo-labeled target data points in the training process. Experiments show that the proposed model can be effective in transferring knowledge from source to target domain. As an example, we use the classification of prostate cancer images into low-cancerous and high-cancerous regions.
Joint analysis of multiple biomarker images and tissue morphology is important for disease diagnosis, treatment planning and drug development. It requires cross-staining comparison among Whole Slide Images (WSIs) of immunohistochemical and hematoxylin and eosin (H&E) microscopic slides. However, automatic, and fast cross-staining alignment of enormous gigapixel WSIs at single-cell precision is challenging. In addition to morphological deformations introduced during slide preparation, there are large variations in cell appearance and tissue morphology across different staining. In this paper, we propose a two-step automatic feature-based cross-staining WSI alignment to assist localization of even tiny metastatic foci in the assessment of lymph node. Image pairs were aligned allowing for translation, rotation, and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale-invariant image transform (SIFT), followed by the fast sample consensus (FSC) protocol for finding point correspondences and finally aligned the images. The Registration results were evaluated using both visual and quantitative criteria using the Jaccard index. The average Jaccard similarity index of the results produced by the proposed system is 0.942 when compared with the manual registration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.