This paper demonstrates the application of a generalized layered linear viscoelastic (LVE) analysis for estimating flexible pavements' structural response. The procedure is based on the Multi-Layered Elastic Theory (MLET) and the elastic-viscoelastic correspondence principle using a numerical inverse Laplace transform. A comparison of the direct layered viscoelastic responses with approximate solutions based on the elastic collocation method was also carried out. Furthermore, it is proposed to use the collocation method using LVE solutions at selected time durations in order to improve the accuracy of the elastic collocation method. The LVE collocation method was further extended for analysis of moving loads. The method was illustrated by analysing a pavement structure subjected to moving wheel loads of 30, 50, 60 and 80 kN using a Heavy Vehicle Simulator (HVS). The various responses (stresses and strains) in the pavement, at different pavement temperatures, were measured using various types of sensors installed in the structure. The LVE calculations agreed very well with the measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.