The precision geolocation and target tracking problem has been addressed in this paper using High-Degree Non-linear Filtering based on hybrid Time Difference of Arrival (TDOA), Frequency Difference of Arrival (FDOA) measurements using Low Earth Orbit (LEO) satellite with slant range. In order to update the noise covariance and estimation process at each measurement, the Gauss Hermite H ∞ Filter based on hybrid TDOA/FDOA geolocation measurements are proposed in this work. Numerous scenarios with the different rotation speed of Radio Frequency (RF) emitter has been considered. Multi LEO satellites have used to estimate and track the location of the unknown Unmanned Aerial Vehicle (UAV) under uncertainties of measurements. The uncertainties of measurements have been considered because the position and velocity of sensors are not fixed, which may affect the emitter location estimation measurements. The Cramer-Rao Lower Bound (CRLB) is used as a metric for measuring and analyzing the performance of the H ∞ /GHKF 3 rd degree and H ∞ /GHKF 5 th degree algorithm, as well as compare it with state-of-the-art algorithms. The simulation results of the proposed algorithm indicate that the significant improvement in performance for example, 10% based on TDOA, 40% for FDOA, and 50% on TDOA/FDOA have been achieved.
A single Radio-Frequency Interference (RFI) is a disturbance source of modern wireless systems depending on Global Navigation Satellite Systems (GNSS) and Satellite Communication (SatCom). In particular, significant applications such as aeronautics and satellite communication can be severely affected by intentional and unintentional interference, which are unmitigated. The matter requires finding a radical and effective solution to overcome this problem. The methods used for overcoming the RFI include interference detection, interference classification, interference geolocation, tracking and interference mitigation. RFI source geolocation and tracking methodology gained universal attention from numerous researchers, specialists, and scientists. In the last decade, various conventional techniques and algorithms have been adopted in geolocation and target tracking in civil and military operations. Previous conventional techniques did not address the challenges and demand for novel algorithms. Hence there is a necessity for focussing on the issues associated with this. This survey introduces a review of various conventional geolocation techniques, current orientations, and state-of-the-art techniques and highlights some approaches and algorithms employed in wireless and satellite systems for geolocation and target tracking that may be extremely beneficial. In addition, a comparison between different conventional geolocation techniques has been revealed, and the comparisons between various approaches and algorithms of geolocation and target tracking have been addressed, including H∞ and Kalman Filtering versions that have been implemented and investigated by authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.