The most important advance in photocatalysis in the last decade has been the synthesis and application of organic compounds to promote this process. Organic dyes have shown ecological and economic...
Highly efficient silicone surfactants are typically based on polyether hydrophiles. As part of a program to increase the natural content of silicones, we describe the synthesis of silicone surfactants with amino acid hydrophiles (cysteine, arginine, and lysine). The compounds were prepared using a radial thiol–ene reaction with vinylsilicones for cysteine derivatives and a catalyst-free aza-Michael reaction with arginine and lysine. Short chain surfactants with silicone monomer:hydrophile ratios of 5:1 or less (e.g., telechelic silicones of lysine-linker-(Me2OSi)n-linker-lysine n = 10) were ineffective at stabilizing emulsions of silicone oil (D4): water. However, excellent surfactants were realized as the chain length (n) increased to 25 or 50, stabilizing water-in-oil emulsions with high water content (80% or 90%). The surfactants, especially the longer chain compounds, were stable against pH except <4 or >9 and survived freeze/thaw cycles. These surfactants contain 12–25% natural materials, improving their sustainability compared to those containing synthetic hydrophiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.