This work demonstrates a novel and sustainable energy solution in the form of a photovoltaic fabric that can deliver a reliable energy source for wearable and mobile devices. The solar fabric was woven using electronic yarns created by embedding miniature crystalline silicon solar cells connected with fine copper wires within the fibres of a textile yarn. This approach of integrating solar energy harvesting capability within the heart of the textile fabric allows it to retain the flexibility, threedimensional deformability, and moisture and heat transfer characteristics of the fabric. In this investigation, both the design and performance of the solar cell embedded yarns and solar energy harvesting fabrics were explored. These yarns and resultant fabrics were characterised under different light intensities and at different angles of incident light, a critical factor for a wearable device. The solar cell embedded yarns woven into fabrics can undergo domestic laundering and maintained~90% of their original power output after 15 machine wash cycles. The solar fabric embedded with 200 solar cells demonstrated here (44.5 mm × 45.5 mm active area) was capable of continuously generating~2.15 mW/cm 2 under one sun illumination and was capable of powering a basic mobile phone. The power generation capability and durability of the solar energy harvesting fabric proved its viability to power wearable devices as an integral part of regular clothing.
A novel photodiode-embedded yarn has been presented and characterized for the first time, offering new possibilities for applications including monitoring body vital signs (including heart rate, blood oxygen and skin temperature) and environmental conditions (light, humidity and ultraviolet radiation). To create an E-Textile integrated with electronic devices that is comfortable, conformal, aesthetically pleasing and washable, electronic components are best integrated within the structure of a textile fabric in yarn form. The device is first encapsulated within a protective clear resin micro-pod before being covered in a fibrous sheath. The resin micro-pod and covering fibres have a significant effect on the nature of light received by the photoactive region of the device. This work characterised the effects of both encapsulating photodiodes within resin micro-pods and covering the micro-pod with a fibrous sheath on the opto-electronic parameters. A theoretical model is presented to provide an estimate for these effects and validated experimentally using two photodiode types and a range of different resin micro-pods. This knowledge may have wider applications to other devices with small-scale opto-electronic components. Wash tests confirmed that the yarns could survive multiple machine wash and drying cycles without deterioration in performance.
An increased use in wearable, mobile, and electronic textile sensing devices has led to a desire to keep these devices continuously powered without the need for frequent recharging or bulky energy storage. To achieve this, many have proposed integrating energy harvesting capabilities into clothing: solar energy harvesting has been one of the most investigated avenues for this due to the abundance of solar energy and maturity of photovoltaic technologies. This review provides a comprehensive, contemporary, and accessible overview of electronic textiles that are capable of harvesting solar energy. The review focusses on the suitability of the textile-based energy harvesting devices for wearable applications. While multiple methods have been employed to integrate solar energy harvesting with textiles, there are only a few examples that have led to devices with textile properties.
Electronically active yarn (E-yarn) pioneered by the Advanced Textiles Research Group of Nottingham Trent University contains a fine conductive copper wire soldered onto a package die, micro-electro-mechanical systems device or flexible circuit. The die or circuit is then held within a protective polymer packaging (micro-pod) and the ensemble is inserted into a textile sheath, forming a flexible yarn with electronic functionality such as sensing or illumination. It is vital to be able to wash E-yarns, so that the textiles into which they are incorporated can be treated as normal consumer products. The wash durability of E-yarns is summarized in this publication. Wash tests followed a modified version of BS EN ISO 6330:2012 procedure 4N. It was observed that E-yarns containing only a fine multi-strand copper wire survived 25 cycles of machine washing and line drying; and between 5 and 15 cycles of machine washing followed by tumble-drying. Four out of five temperature sensing E-yarns (crafted with thermistors) and single pairs of LEDs within E-yarns functioned correctly after 25 cycles of machine washing and line drying. E-yarns that required larger micro-pods (i.e., 4 mm diameter or 9 mm length) were less resilient to washing. Only one out of five acoustic sensing E-yarns (4 mm diameter micro-pod) operated correctly after 20 cycles of washing with either line drying or tumble-drying. Creating an E-yarn with an embedded flexible circuit populated with components also required a relatively large micro-pod (diameter 0.93 mm, length 9.23 mm). Only one embedded circuit functioned after 25 cycles of washing and line drying. The tests showed that E-yarns are suitable for inclusion in textiles that require washing, with some limitations when larger micro-pods were used. Reduction in the circuit’s size and therefore the size of the micro-pod, may increase wash resilience.
This work presents an innovative solar energy harvesting fabric and demonstrates its suitability for powering wearable and mobile devices. A large solar energy harvesting fabric containing 200 miniature solar cells has been shown to charge a 110 mF textile supercapacitor bank within 37 s. A series of solar energy harvesting fabrics with different design features, such as using red or black fibres, were tested and compared to a commercially available flexible solar panel outside under direct sunlight. The results showed that the solar energy harvesting fabrics had power densities that were favorable when compared to the commercially available solar cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.