Reinforcement of flexible fibre reinforced plastic (FRP) composites with standard textile fibres is a potential low cost solution to less critical loading applications. The mechanical behaviour of FRPs based on mechanically bonded nonwoven preforms composed of either low or high modulus fibres in a thermoplastic polyurethane (TPU) matrix were compared following compression moulding. Nonwoven preform fibre compositions were selected from lyocell, polyethylene terephthalate (PET), polyamide (PA) as well as para-aramid fibres (polyphenylene terephthalamide; PPTA). Reinforcement with standard fibres manifold improved the tensile modulus and strength of the reinforced composites and the relationship between fibre, fabric and composite’s mechanical properties was studied. The linear density of fibres and the punch density, a key process variable used to consolidate the nonwoven preform, were varied to study the influence on resulting FRP mechanical properties. In summary, increasing the strength and degree of consolidation of nonwoven preforms did not translate to an increase in the strength of resulting fibre reinforced TPU-composites. The TPU composite strength was mainly dependent upon constituent fibre stress-strain behaviour and fibre segment orientation distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.