The shortened life span of neonatal red blood cells (RBC) is associated with accelerated membrane loss. The present study was designed to measure the critical shear force that causes membrane failure and the rate of membrane failure for neonatal and adult RBC. A micropipette technique was used to determine the membrane extensional (shear) elastic modulus (i.e. resistance of the membrane to extensional elastic deformation), the rate of extensional membrane deformation (i.e. surface viscosity), and the tension for local membrane fragmentation. A flow channel system was used to determine the critical shear force of plastic membrane deformation (i.e. beginning of membrane tether formation), the rate of plastic deformation, and the plastic shear viscosity coefficient. The extensional elastic modulus of neonatal RBC was 18% smaller and the rate of elastic deformation was 25% longer compared with adult cells (p less than 0.05). Membrane surface viscosity was similar for both cell types. The tension for local membrane fragmentation in the micropipette was 23% lower in neonates than in adults. However, the strain (i.e. extent of membrane deformation calculated as ratio of the stress resultant and the elastic modulus) at which membrane rupture in the micropipette occurred was similar for neonatal and adult RBC. This indicates that the smaller critical tension for neonatal RBC membrane failure was due to increased membrane elastic deformability.(ABSTRACT TRUNCATED AT 250 WORDS)
BACKGROUND AND OBJECTIVES: In capillaries with diameters less than those of resting RBCs, the cells have to deform to pass through such narrow vessels. Since RBCs of fetuses, neonates and adults differ in their geometrical properties the flow behavior of RBCs with different sizes in uniform tubes with diameters of 3 to 6 m were studied by means of a micropipette system and a mathematical model. Assumptions in this model include an RBC flow velocity of 1 mm/s, axisymmetric cell shape and a gap between the RBC and the vessel wall that allows sufficient lubrication. The flow resistance depends on the surface area and volume of RBCs, the plasma viscosity and the vessel diameter. METHODS: Surface area and volume of different RBC populations (20 fetuses, 20 preterm neonates, 10 term neonates and 10 adults) were determined by means of a micropipette system and plasma viscosity was measured using a capillary tube viscometer. The flow behavior of RBCs with different volumes (61, 83 and 127 fl) was studied by direct microscopic observation using a micropipette system. The micropipettes had diameters of 3.5, 4.1, 5.1, and 6.0 m. The flow velocity of the RBC in the pipettes was 1 mm/s and the calculated and measured cell lengths were compared. RESULTS: Volume and surface area of RBCs were 140 ± 29 fl and 172 ± 20 m 2 , respectively, in the fetuses, decreased with increasing maturity (term neonates: 110 ± 20 fl and 149 ± 18 m 2 ) and reached the lowest values in adults (93 ± 14 fl and 136 ± 12 m 2 ). Plasma viscosities increased with increasing maturity due to rising plasma protein concentrations. The flow model leads to the following conclusions: During the passage of 3-to 6-m vessels, the large fetal and neonatal RBCs are more elongated than the smaller adult RBCs. The critical vessel diameter, i.e., when the rear of the RBC becomes convex during passage of a narrow capillary, was 4.1 m for fetal RBCs, 3.6 m for neonatal RBCs and 3.3 m adult cells. Suspended in the same medium, fetal and neonatal RBCs require 27% (term neonates) to 100% (fetuses) higher driving pressures than adult RBCs to achieve the necessary elongation for passing through a 4.5-m capillary. However, the different RBCs require similar driving pressures if the cells are suspended in the corresponding autologous plasma. Cell lengths of the RBCs with different geometry determined during the flow experiments agreed with the predicted values. CONCLUSION: We conclude that the large size of fetal and neonatal RBCs may cause impaired flow in narrow vessels with diameters below the critical values of 3.6 to 4.1 m. In vessels with diameters above the critical diameter (D cr ), the disadvantage of the large size of neonatal and fetal RBCs appears to be completely compensated for by the lower plasma viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.