Phenolic compounds of 14 pomace samples originating from red and white winemaking were characterized by HPLC-MS. Up to 13 anthocyanins, 11 hydroxybenzoic and hydroxycinnamic acids, and 13 catechins and flavonols as well as 2 stilbenes were identified and quantified in the skins and seeds by HPLC-DAD. Large variabilities comprising all individual phenolic compounds were observed, depending on cultivar and vintage. Grape skins proved to be rich sources of anthocyanins, hydroxycinnamic acids, flavanols, and flavonol glycosides, whereas flavanols were mainly present in the seeds. However, besides the lack of anthocyanins in white grape pomace, no principal differences between red and white grape varieties were observed. This is the first study presenting comprehensive data on the contents of individual phenolic compounds comprising all polyphenolic subclasses of grapes including a comparison of several red and white pomaces from nine cultivars. The results obtained in the present study confirm that both skins and seeds of most grape cultivars constitute a promising source of polyphenolics.
Because the impact of agronomical factors on bakery products quality is still an insufficiently studied field, acrylamide contents of breads produced from flours of nine wheat, two rye, and two spelt varieties harvested in 2003 and 2004 were investigated. It could be demonstrated that acrylamide content in bread strongly depends on the cultivar, with extremes differing by a factor of 5.4 due to marked differences in free asparagine and crude protein contents. Nitrogen fertilization also resulted in elevated amino acid and protein contents, thus increasing acrylamide levels from 10.6 to 55.6 mug/kg. Independent of fertilization, harvest year turned out to be another factor influencing acrylamide formation. Breads produced from 2003 flours showed significantly higher acrylamide contents than those of 2004, which was ascribed to favorable light and temperature conditions during the cultivation period, thus enhancing amino acid and protein contents. Sprouting of the grain also resulted in significantly higher acrylamide levels, which was attributed to elevated enzyme activities and the formation of precursors from protein and starch. Furthermore, bakery products made from flours with higher extraction rates were shown to contain higher acrylamide levels resulting from extracted free asparagine and protein from the aleuron layers of the cereal grain.
A novel process for enzyme‐assisted extraction of polyphenols from winery by‐products was established on a pilot‐plant scale. Optimization of enzymatic hydrolysis of grape skins, that is, selection of pectinolytic and cellulolytic enzymes, enzyme‐substrate ratio, and time‐temperature regime of enzymatic treatment, was conducted on a laboratory scale. Enzyme activities were monitored by viscosity measurement of resuspended grape pomace and by quantification of oligomeric pectin and cellulose degradation products released from cell wall material. Optimal conditions were obtained with 5000 ppm (based on dry matter) of a pectinolytic and 2500 ppm of a cellulolytic enzyme preparation, respectively, at 50°C, which were also applied in pilot‐plant scale experiments. Concomitant determination of individual polyphenolics demonstrated a significantly improved yield for most compounds when compared with experiments without enzyme addition. Recovery rates were comparable to those obtained when grape pomace was extracted using sulfite. Pre‐extraction of the pomace with hot water followed by treatment with cell wall degrading enzymes even increased yields of phenolic compounds. Only some quercetin glycosides and malvidin coumaroylglucoside were partly hydrolyzed due to enzyme side activities. This new process may provide a valuable alternative to the application of sulfite, which is considered crucial in food processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.