Mud volcanism and diapirism have puzzled geoscientists for ∼2 centuries. They have been described onshore and offshore in many places on Earth, and although they occur in various tectonic settings, the majority of the features known to date are located in compressional tectonic scenarios. This paper summarizes the main thrusts in mud volcano research as well as the various regions in which mud volcanism has been described. Mud volcanoes show variable geometry (up to tens of kilometers in diameter and several hundred meters in height) and a great diversity regarding the origin of the fluid and solid phases. Gas (predominantly methane), water, and mud may be mobilized at subbottom depth of only a few meters but, in places, can originate from several kilometers depth (with minor crustal or mantle input). The possible contribution of mud extrusion to global budgets, both from quiescent fluid emission and from the extrusive processes themselves, is important. In regions where mud volcanoes are abundant, such as the collision zones between Africa and Eurasia, fluid flux through mud extrusion exceeds the compaction‐driven pore fluid expulsion of the accretionary wedge. Also, quiescent degassing of mud volcanoes may contribute significantly to volatile budgets and, hence, to greenhouse climate.
The discovery of slow earthquakes has revolutionized the field of earthquake seismology. Defining the locations of these events and the conditions that favor their occurrence provides important insights into the slip behavior of tectonic faults. We report on a family of recurring slow-slip events (SSEs) on the plate interface immediately seaward of repeated historical moment magnitude () 8 earthquake rupture areas offshore of Japan. The SSEs continue for days to several weeks, include both spontaneous and triggered slip, recur every 8 to 15 months, and are accompanied by swarms of low-frequency tremors. We can explain the SSEs with 1 to 4 centimeters of slip along the megathrust, centered 25 to 35 kilometers (km) from the trench (4 to 10 km depth). The SSEs accommodate 30 to 55% of the plate motion, indicating frequent release of accumulated strain near the trench.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.