The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.
The Arctic marine biome, shrinking with increasing temperature and receding sea-ice cover, is tightly connected to lower latitudes through the North Atlantic. By flowing northward through the European Arctic Corridor (the main Arctic gateway where 80% of in-and outflow takes place), the North Atlantic Waters transport most of the ocean heat, but also nutrients and planktonic organisms toward the Arctic Ocean. Using satellite-derived altimetry observations, we reveal an increase, up to two-fold, in North Atlantic current surface velocities over the last 24 years. More importantly, we show evidence that the North Atlantic current and its variability shape the spatial distribution of the coccolithophore Emiliania huxleyi (Ehux), a tracer for temperate ecosystems. We further demonstrate that bio-advection, rather than water temperature as previously assumed, is a major mechanism responsible for the recent poleward intrusions of southern species like Ehux. Our findings confirm the biological and physical "Atlantification" of the Arctic Ocean with potential alterations of the Arctic marine food web and biogeochemical cycles.
Arctic sea ice is experiencing a shorter growth season and an earlier ice melt onset. The significance of spring microalgal blooms taking place prior to sea ice breakup is the subject of ongoing scientific debate. During the Green Edge project, unique time-series data were collected during two field campaigns held in spring 2015 and 2016, which documented for the first time the concomitant temporal evolution of the sea ice algal and phytoplankton blooms in and beneath the landfast sea ice in western Baffin Bay. Sea ice algal and phytoplankton blooms were negatively correlated and respectively reached 26 (6) and 152 (182) mg of chlorophyll a per m 2 in 2015 (2016). Here, we describe and compare the seasonal evolutions of a wide variety of physical forcings, particularly key components of the atmosphere-snow-ice-ocean system, that influenced microalgal growth during both years. Ice algal growth was observed under low-light conditions before the snow melt period and was much higher in 2015 due to less snowfall. By increasing light availability and water column stratification, the snow melt onset marked the initiation of the phytoplankton bloom and, concomitantly, the termination of the ice algal bloom. This study therefore underlines the major role of snow on the seasonal dynamics of microalgae in western Baffin Bay. The under-ice water column was dominated by Arctic Waters. Just before the sea ice broke up, phytoplankton had consumed most of the nutrients in the surface layer. A subsurface chlorophyll maximum appeared and deepened, favored by spring tide-induced mixing, reaching the best compromise between light and nutrient availability. This deepening evidenced the importance of upper ocean tidal dynamics for shaping vertical development of the under-ice phytoplankton bloom, a major biological event along the western coast of Baffin Bay, which reached similar magnitude to the offshore ice-edge bloom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.