Background ARID1A is a member of the SWI/SNF chromatin remodeling complex. It functions as a tumor suppressor and several therapeutic targets in ARID1A-mutated cancers are currently under development, including EZH2. A synthetic lethal relationship between ARID1A and EZH2 has been revealed in several tumor entities. Although genomic alterations of ARID1A have been described in various cancers, no study has examined correlations between ARID1A gene mutation and protein expression with clinicopathologic parameters and prognosis, particularly in liver fluke-related cholangiocarcinoma (Ov-CCA). Here, we investigated the clinical significance of ARID1A mutations and protein expression in CCA tissues and determined whether there is a correlation with EZH2 protein expression. Methods We evaluated ARID1A and EZH2 immunoreactivity using immunohistochemistry in 98 Ov-CCA with a wide range of clinicopathological features. Somatic mutations of ARID1A were analyzed using the ICGC sequencing data in 489 of Ov and non Ov-CCA and assessed prognostic values. Results While detecting a loss or reduction of ARID1A expression in 54 cases (55%) in Ov-CCA, ARID1A expression was associated with ARID1A mutations (p < 0.001, adjusted p-value < 0.001). We observed that 12 of 13 tumors (92%) with loss of ARID1A expression had truncating mutations. There were nine of 13 tumors (69%) with loss of ARID1A expression and 25 of 41 tumors (61%) with low ARID1A expression exhibited distant metastasis (p = 0.028, adjusted p-value = 0.168). ARID1A was predominantly mutated in Ov-CCA compared to non Ov-CCA (24% and 14% in Ov-CCA and non Ov-CCA, respectively, p = 0.027). There were 36 of 72 (50%) and 52 of 79 (66%) tumors with ARID1A mutation showed tumor stage IV and T3/T4, respectively. The significant mutual exclusivity and co-occurrence between ARID1A and TP53/KRAS mutations were not found in ICGC cohort. In addition, high EZH2 expression, a potential synthetic lethal target in ARID1A-mutated tumors, was detected in 49 of 98 Ov-CCA (50%). Importantly, neither ARID1A expression nor ARID1A mutations correlated with EZH2 expression in this cohort. Conclusion We found that ARID1A inactivation, by somatic mutation or by loss of expression, frequently occurs in Ov-CCA. Reduction of ARID1A expression and/or somatic mutation was shown to be associated with CCA progression. These findings suggest that ARID1A may serve as a prognostic biomarker, and thus may be a promising therapeutic target for CCA.
Background Genetic alterations in ARID1A were detected at a high frequency in cholangiocarcinoma (CCA). Growing evidence indicates that the loss of ARID1A expression leads to activation of the PI3K/AKT pathway and increasing sensitivity of ARID1A-deficient cells for treatment with the PI3K/AKT inhibitor. Therefore, we investigated the association between genetic alterations of ARID1A and the PI3K/AKT pathway and evaluated the effect of AKT inhibition on ARID1A-deficient CCA cells. Methods Alterations of ARID1A, PI3K/AKT pathway-related genes, clinicopathological data and overall survival of 795 CCA patients were retrieved from cBio Cancer Genomics Portal (cBioPortal) databases. The association between genetic alterations and clinical data were analyzed. The effect of the AKT inhibitor (MK-2206) on ARID1A-deficient CCA cell lines and stable ARID1A-knockdown cell lines was investigated. Cell viability, apoptosis, and expression of AKT signaling were analyzed using an MTT assay, flow cytometry, and Western blots, respectively. Results The analysis of a total of 795 CCA samples revealed that ARID1A alterations significantly co-occurred with mutations of EPHA2 (p < 0.001), PIK3CA (p = 0.047), and LAMA1 (p = 0.024). Among the EPHA2 mutant CCA tumors, 82% of EPHA2 mutant tumors co-occurred with ARID1A truncating mutations. CCA tumors with ARID1A and EPHA2 mutations correlated with better survival compared to tumors with ARID1A mutations alone. We detected that 30% of patients with PIK3CA driver missense mutations harbored ARID1A-truncated mutations and 60% of LAMA1-mutated CCA co-occurred with truncating mutations of ARID1A. Interestingly, ARID1A-deficient CCA cell lines and ARID1A-knockdown CCA cells led to increased sensitivity to treatment with MK-2206 compared to the control. Treatment with MK-2206 induced apoptosis in ARID1A-knockdown KKU-213A and HUCCT1 cell lines and decreased the expression of pAKTS473 and mTOR. Conclusion These findings suggest a dependency of ARID1A-deficient CCA tumors with the activation of the PI3K/AKT-pathway, and that they may be more vulnerable to selective AKT pathway inhibitors which can be used therapeutically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.