The present work investigates the effect of jack wood flour (JWF) content on the fracture toughness, tensile, impact, and morphological behavior of the prepared green biocomposites. From 0 to 35 wt% (volume fraction ( Φf) = 0–0.34) of JWF was incorporated as a reinforcing biodegradable filler into poly(ε-caprolactone) (PCL) matrix by melt compounding in a twin screw extruder. The tensile modulus increases by 80.48% at the highest Φf = 0.34, though marginal increment (13.71%) in the yield strength was registered. A sharp reduction in notched Izod impact strength (85%) was observed with increasing JWF content. The fracture toughness of the prepared biocomposites based on post-yield fracture mechanics concept was investigated by essential work of fracture (EWF) methodology. Incorporation of JWF into PCL matrix diminishes the EWF ( we), while increasing the non-essential work of fracture ( βwp). In the biocomposites, principally two mechanisms governed the fracture deformation. Large JWF particles act as stress concentration points and favor the crack initiation, while the smaller particles favor fibrillation which arrests the crack propagation enhancing the parameter βwp at lower concentration of JWF. Freeze-fractured surfaces show a degree of phase adhesion at lower Φf of JWF. The phase adhesion parameter obtained from micromechanical analysis of tensile properties suggesting the mechanical interlocking and interaction between PCL and JWF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.