Layanan Aspirasi dan Pengaduan Online Rakyat (LAPOR!) merupakan salah satu program yang dicanangkan pemerintah guna menghimpun informasi seluasluasnya yang berupa kritik maupun saran dari masyarakat. Laporan masyarakat di bidang kesehatan yang berupa data teks yang tidak terstruktur (unstructured data) diklasifikasikan menjadi tiga kelas yaitu Aspirasi, Keluhan, dan Pertanyaan menggunakan metode machine learning yaitu Naïve Bayes. Pada periode Januari 2013 sampai dengan Desember 2015, jumlah laporan masyarakat yang masuk ke dalam sistem LAPOR! sebanyak 87492 laporan, terdapat 32047 atau sekitar 37% laporan yang belum ditanggapi, 8072 atau sekitar 9% laporan yang sedang proses ditanggapi, dan sisanya sebanyak 47373 atau 54% laporan sudah ditanggapi dan dinyatakan selesai. jumlah laporan yang paling banyak terdapat pada provinsi DKI Jakarta dan pulau Jawa secara keseluruhan. Provinsi yang menjadi pusat area yang menyumbangkan laporan terbanyak adalah DKI Jakarta sebanyak 25129 laporan, disusul Jawa Barat 15445 laporan, Jawa Timur 6106 laporan, Jawa Tengah 5818 laporan, dan seterusnya. Sedangkan provinsi yang paling sedikit melakukan lapor adalah provinsi Papua, Maluku, Maluku Utara, Sulawesi Barat, Irian Jaya Barat, dan Gorontalo dengan jumlah laporan dari provinsi tersebut dibawah 100 laporan. Selanjutnya hasil klasifikasi akan dianalisis dengan metode Text Mining, konsep utamanya adalah dengan melakukakan ekplorasi seluas-seluasnya dan ekstraksi dengan data yang sangat banyak dan terus bertambah, sehingga ditemukan sebuah fakta dan informasi yang dianggap penting dan dapat berguna untuk berbagai bidang keperluan. Hasil klasifikasi menunjukkan tingkat akurasi sebesar 96.67%.
CO2 emissions have been an environmental issue for decades. The trigger for the increasing concentration of CO2 in the atmosphere is the growth of industries related to burning fossil fuels for coal, natural gas, and petroleum. For nearly a century, several attempts have been made to suppress the rapid growth of CO2 . This study uses daily atmospheric CO2 levels observed in Mauna Loa laboratories. The method used is a Prophet that can handle seasonality and mark the change points. Almost 20% of data was missing value, which was then imputed using spline interpolation. Based on the analysis results, CO2 levels have an upward trend throughout the year and seasonality. There is no point of change in the last ten years that shows a decrease in CO2 levels. Using forward chaining cross-validation evaluation and error measurement, the prophet model can follow the pattern of CO2 levels well. The average RMSE value is less than 2.0, with an MAPE value bellow 0.5%.
The recommendation system provides recommendations for something, be it goods, songs, or movies. The term system is not limited to a service system but concerns a model that can provide recommendations. With recent technological advances, many companies provide various skincare products because current generations are increasingly aware of self-care. With various choices, someone may experience confusion in determining the product they want to buy. Therefore, we need a system that can provide product recommendations run on any platform we use. The most common method for recommendation systems often comes with Collaborating Filtering (CF) where it relies on the past user and item dataset. The singular value decomposition (SVD) method uses a matrix factorization technique that predict the user's rating based on historical ratings. The measurement of the model's accuracy is the RMSE average of 1.01276, indicating that this value results from the best parameters. The results focus on showing skincare product recommendations to users sorted based on rating predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.