The optical, structural, and electrical properties of thin layers made from poly(3‐hexylthiophene) (P3HT) samples of different molecular weights are presented. As reported in a previous paper by Kline et al., Adv. Mater. 2003, 15, 1519, the mobilities of these layers are a strong function of the molecular weight, with the largest mobility found for the largest molecular weight. Atomic force microscopy studies reveal a complex polycrystalline morphology which changes considerably upon annealing. X‐ray studies show the occurrence of a layered phase for all P3HT fractions, especially after annealing at 150 °C. However, there is no clear correlation between the differences in the transport properties and the data from structural investigations. In order to reveal the processes limiting the mobility in these layers, the transistor properties were investigated as a function of temperature. The mobility decreases continuously with increasing temperatures; with the same trend pronounced thermochromic effects of the P3HT films occur. Apparently, the polymer chains adopt a more twisted, disordered conformation at higher temperatures, leading to interchain transport barriers. We conclude that the backbone conformation of the majority of the bulk material rather than the crystallinity of the layer is the most crucial parameter controlling the charge transport in these P3HT layers. This interpretation is supported by the significant blue‐shift of the solid‐state absorption spectra with decreasing molecular weight, which is indicative of a larger distortion of the P3HT backbone in the low‐molecular weight P3HT layers.
Recently, two different groups have reported independently that the mobility of field-effect transistors made from regioregular poly(3-hexylthiophene) (P3HT) increases strongly with molecular weight. Two different models were presented: one proposing carrier trapping at grain boundaries and the second putting emphasis on the conformation and packing of the polymer chains in the thin layers for different molecular weights. Here, we present the results of detailed investigations of powders and thin films of deuterated P3HT fractions with different molecular weight. For powder samples, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to investigate the structure and crystallization behavior of the polymers. The GPC investigations show that all weight fractions possess a rather broad molecular weight distribution. DSC measurements reveal a strong decrease of the crystallization temperature and, most important, a significant decrease of the degree of crystallinity with decreasing molecular weight. To study the structure of thin layers in lateral and vertical directions, both transmission electron microscopy (TEM) and X-ray grazing incidence diffraction (GID) were utilized. These methods show that thin layers of the low molecular weight fraction consist of well-defined crystalline domains embedded in a disordered matrix. We propose that the transport properties of layers prepared from fractions of poly(3-hexylthiophene) with different molecular weight are largely determined by the crystallinity of the samples and not by the perfection of the packing of the chains in the individual crystallites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.