<span lang="EN-US">Cardiovascular diseases remain the leading cause of death, taking an estimated 17.9 million lives each year and representing 31% of all global deaths. The patient records including blood reports, cardiac echo reports, and physician’s notes can be used to perform feature analysis and to accurately classify heart disease patients. In this paper, an incremental deep learning model was developed and trained with stochastic gradient descent using feedforward neural networks. The chi-square test and the dropout regularization have been incorporated into the model to improve the generalization capabilities and the performance of the heart disease patients' classification model. The impact of the learning rate and the depth of neural networks on the performance were explored. The hyperbolic tangent, the rectifier linear unit, the Maxout, and the exponential rectifier linear unit were used as activation functions for the hidden and the output layer neurons. To avoid over-optimistic results, the performance of the proposed model was evaluated using balanced accuracy and the overall predictive value in addition to the accuracy, sensitivity, and specificity. The obtained results are promising, and the proposed model can be applied to a larger dataset and used by physicians to accurately classify heart disease patients.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.