BackgroundXenobiotic Metabolizing Enzymes (XMEs) contribute to the detoxification of numerous cancer therapy-induced products. This study investigated the susceptibility and prognostic implications of the CYP2E1, CYP2C19, CYP2D6, mEH and NAT2 gene polymorphisms in breast carcinoma patients.MethodsThe authors used polymerase chain reaction and restriction enzyme digestion to characterize the variation of the CYP2E1, CYP2C19, CYP2D6, mEH and NAT2 gene in a total of 560 unrelated subjects (246 controls and 314 patients).ResultsThe mEH (C/C) mutant and the NAT2 slow acetylator genotypes were significantly associated with breast carcinoma risk (p = 0.02; p = 0.01, respectively). For NAT2 the association was more pronounced among postmenopausal patients (p = 0.006). A significant association was found between CYP2D6 (G/G) wild type and breast carcinoma risk only in postmenopausal patients (p = 0.04). Association studies of genetic markers with the rates of breast carcinoma specific overall survival (OVS) and the disease-free survival (DFS) revealed among all breast carcinoma patients no association to DFS but significant differences in OVS only with the mEH gene polymorphisms (p = 0.02). In addition, the mEH wild genotype showed a significant association with decreased OVS in patients with axillary lymph node-negative patients (p = 0.03) and with decreasesd DFS in patients with axillary lymph node-positive patients (p = 0.001). However, the NAT2 intermediate acetylator genotype was associated with decreased DFS in axillary lymph node-negative patients.ConclusionThe present study may prove that polymorphisms of some XME genes may predict the onset of breast carcinoma as well as survival after treatment.
Glutathione S-transferase Theta1 and Mu1 (GSTT1 and GSTM1) are involved in the metabolism and detoxification of a wide range of potential environmental carcinogens. Conversely, they contribute to tumour cell survival by detoxification of numerous products induced by cancer therapy. The authors designed a large study to investigate the susceptibility and prognostic implications of the GSTT1 and GSTM1 gene deletions in breast carcinoma. The authors used the polymerase chain reaction to characterise the variation of the GSTT1 and GSTM1 genes in 309 unrelated Tunisian patients with breast carcinoma and 242 healthy control subjects. Associations of the clinic-pathologic parameters and the genetic markers with the rates of the breast carcinoma specific overall survival (OVS) and the disease-free survival (DFS) were assessed using univariate and multivariate analyses. A significant association was found between gene deletion of GSTT1 and the risk of early onset of breast carcinoma (OR ¼ 1.60, P ¼ 0.02). The lack of GSTT1 gene deletion was significantly associated with poor clinical response to chemotherapy (OR ¼ 2.29, P ¼ 0.03). This association was significantly higher in patients with axillary's lymph node-negative breast carcinoma (OR ¼ 12.60, P ¼ 0.005). The null-GSTT1 genotype showed a significant association with increased DFS in this selected population of patients. This association was even higher in patients carrying both null-GSTT1 and -GSTM1 genotypes. The gene deletion of GSTs may predict not only the early onset of breast carcinoma but also the clinical response to chemotherapy and the recurrence-free survival for patients with lymph nodenegative breast carcinoma.
The aim of the study was to learn whether the lethal and the motor incoordination (ataxia) side effect of ondansetron (Zophren) administration is dosing-time dependent. Ondansetron is a serotonin 5-HT3 receptor antagonist used primarily to control nausea and vomiting arising from cytotoxic chemo- and radiotherapy. A total of 210 male Swiss mice 10 to 12 weeks of age were synchronized for 3 weeks by 12 h light (rest span)/12 h dark (activity span). Different doses of ondansetron were injected intraperitoneally (i.p.) at fixed times during the day to determine both the sublethal (TD50) and lethal (LD50) doses, which were, respectively, 3.7 +/- 0.6 mg/kg and 4.6 +/- 0.5 mg/kg. In the chronotoxicologic study a single dose of ondansetron (3.5 mg/kg, i.p.) was administered to different and comparable groups of animals at four different circadian stages [1, 7, 13, and 19 h after light onset (HALO)]. The lethal toxicity was statistically significantly dosing time-dependent (chi2 = 21.51, p < 0.0001). Drug dosing at 1 HALO resulted in 100% survival rate whereas drug dosing at 19 HALO was only one-half that (52%). Similarly, lowest and highest ataxia occurred when ondansetron was injected at 1 and 19 HALO, respectively (chi2 = 22.24, p < 0.0001). Effects on rectal temperature were also dosing-time related (Cosinor analysis, p < 0.0001). The characteristics of the waveform describing the temporal patterns differed between the studied variables, e.g., lethal toxicity and survival rate showing two peaks and rectal temperature showing one peak in the 24 h time series waveform pattern. Cosinor analysis also revealed a statistically significant ultradian (tau = 8 h) rhythmic component in the considered variables. Differences in curve patterns in toxicity elicited by ondansetron on a per end point basis are hypothesized to represent the phase relations between the identified 24 h and 8 h periodicities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.