Megabase-scale intervals of active, gene-rich and inactive, gene-poor chromatin are known to segregate, forming the A and B compartments. Fine mapping of the contents of these A and B compartments has been hitherto impossible, owing to the extraordinary sequencing depths required to distinguish between the long-range contact patterns of individual loci, and to the computational complexity of the associated calculations. Here, we generate the largest published in situ Hi-C map to date, spanning 33 billion contacts. We also develop a computational method, dubbed PCA of Sparse, Super Massive Matrices (POSSUMM), that is capable of efficiently calculating eigenvectors for sparse matrices with millions of rows and columns. Applying POSSUMM to our Hi-C dataset makes it possible to assign loci to the A and B compartment at 500 bp resolution. We find that loci frequently alternate between compartments as one moves along the contour of the genome, such that the median compartment interval is only 12.5 kb long. Contrary to the findings in coarse-resolution compartment profiles, we find that individual genes are not uniformly positioned in either the A compartment or the B compartment. Instead, essentially all (95%) active gene promoters localize in the A compartment, but the likelihood of localizing in the A compartment declines along the body of active genes, such that the transcriptional termini of long genes (>60 kb) tend to localize in the B compartment. Similarly, essentially all active enhancers elements (95%) localize in the A compartment, even when the flanking sequences are comprised entirely of inactive chromatin and localize in the B compartment. These results are consistent with a model in which DNA-bound regulatory complexes give rise to phase separation at the scale of individual DNA elements.
The female mammalian brain exhibits sex hormone-driven plasticity during the reproductive period. Recent evidence implicates chromatin dynamics in gene regulation underlying this plasticity. However, whether ovarian hormones impact higher-order chromatin organization in post-mitotic neurons in vivo is unknown. Here, we mapped the 3D genome of ventral hippocampal neurons across the oestrous cycle and by sex in mice. In females, we find cycle-driven dynamism in 3D chromatin organization, including in oestrogen response elements-enriched X chromosome compartments, autosomal CTCF loops, and enhancer-promoter interactions. With rising oestrogen levels, the female 3D genome becomes more similar to the male 3D genome. Cyclical enhancer-promoter interactions are partially associated with gene expression and enriched for brain disorder-relevant genes and pathways. Our study reveals unique 3D genome dynamics in the female brain relevant to female-specific gene regulation, neuroplasticity, and disease risk.
The female mammalian brain exhibits sex-hormone-driven plasticity during the reproductive period. Evidence implicates chromatin dynamics in gene regulation underlying this plasticity. However, whether ovarian hormones impact higher-order chromatin organization in post-mitotic neurons in vivo is unknown. Here, we mapped 3D genome of ventral hippocampal neurons across the estrous cycle and by sex in mice. In females, we found cycle-driven dynamism in 3D chromatin organization, including in estrogen-response-elements-enriched X-chromosome compartments, autosomal CTCF loops, and enhancer-promoter interactions. With rising estrogen levels, the female 3D genome becomes more similar to the male genome. Cyclical enhancer-promoter interactions are partially associated with gene expression and enriched for brain disorder-relevant genes. Our study reveals unique 3D genome dynamics in the female brain relevant to female-specific gene regulation, neuroplasticity, and disease risk.
High-risk Human papilloma viruses (HPVs), exemplified by HPV16/18, are causally linked to human cancers of the anogenital tract, skin and upper aerodigestive tract. Previously, we identified ECD protein, the human homologue of the Drosophila ecdysoneless gene, as a novel HPV16 E6-interacting protein. Here, we show that ECD, through its C-terminal region, selectively binds to high-risk but not to low-risk HPV E6 proteins. We demonstrate that ECD is overexpressed in cervical and Head & Neck Squamous Cell Carcinoma (HNSCC) cell lines as well as in tumor tissues. Using the TCGA dataset, we show that ECD mRNA overexpression predicts shorter survival in cervical and HNSCC patients. We demonstrate that ECD KD in cervical cancer cell lines led to impaired oncogenic behavior, and ECD co-overexpression with E7 immortalized primary human keratinocytes. RNAseq analyses of SiHa cells upon ECD knockdown led to aberrations in E6/E7 RNA splicing, as well as RNA splicing of several HPV oncogenesis-linked cellular genes, including splicing of components of mRNA splicing machinery itself. Taken together, our results support a novel role of ECD in viral and cellular mRNA splicing to support HPV-driven oncogenesis.Implications: This study links ECD overexpression to poor prognosis and shorter survival in head & neck squamous cell carcinoma and cervical cancers and identifies a critical role of ECD in cervical oncogenesis through regulation of viral and cellular mRNA splicing.
Slowly cycling/infrequently proliferating tumor cells present a clinical challenge due to their ability to evade treatment. Previous studies established that high levels of SOX2 in both fetal and tumor cells restrict cell proliferation and induce a slowly cycling state. However, the mechanisms through which elevated SOX2 levels inhibit tumor cell proliferation have not been identified. To identify common mechanisms through which SOX2 elevation restricts tumor cell proliferation, we initially performed RNA-seq using two diverse tumor cell types. SOX2 elevation in both cell types downregulated MYC target genes. Consistent with these findings, elevating SOX2 in five cell lines representing three different human cancer types decreased MYC expression. Importantly, the expression of a dominant-negative MYC variant, omomyc, recapitulated many of the effects of SOX2 on proliferation, cell cycle, gene expression, and biosynthetic activity. We also demonstrated that rescuing MYC activity in the context of elevated SOX2 induces cell death, indicating that the downregulation of MYC is a critical mechanistic step necessary to maintain survival in the slowly cycling state induced by elevated SOX2. Altogether, our findings uncover a novel SOX2:MYC signaling axis and provide important insights into the molecular mechanisms through which SOX2 elevation induces a slowly cycling proliferative state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.