The locally subnormal brain metabolism observed in some experiments utilizing the Sokoloff 2-deoxyglucose (2-DG) method has often been attributed to postsynaptic inhibition despite the fact that inhibitory postsynaptic potentials are themselves caused by energy-requiring mechanisms. To explore this issue, neurophysiologically confirmed long-duration recurrent inhibition of hippocampal pyramidal unit firing was induced by low frequency (2 to 4 Hz) stimulation of the fornix for 60 min following intravenous infusion of [14C]-2-DG. The resulting autoradiograms showed that long-duration suppression of pyramidal cell firing was accompanied by distinctly increased hippocampal 2-DG uptake, particularly in the stratum pyramidale, which contains a dense plexus of inhibitory interneuronal terminals upon pyramidal cells. Both the pyramidal inhibition and the increased 2-DG uptake were confined to the ipsilateral hippocampus in animals with previously severed fornices and hippocampal commissures. In a second series of rats, the excitatory entorhinohippocampal "perforant path" (PP) was stimulated at low frequency (2 to 9 Hz) following 2-DG administration. At 2 to 4 Hz, each PP stimulation resulted in a brief burst of pyramidal unit firing followed by short-duration firing suppression; this result was associated with paradoxically decreased 2-DG uptake in the ipsilateral stratum molecular. By contrast, 7 to 9 Hz entorhinal stimulation induced PP-mediated excitation immediately followed by powerful intrinsic hippocampal inhibition, evidenced by prolonged pyramidal unit suppression after each stimulation. This suppression was accompanied by increased 2-DG uptake in the dentate stratum molecular and hippocampal stratum pyramidale. Thus it appeared that even with entorhinal stimulation, hippocampal 2-DG uptake was more closely associated with long-duration recurrent inhibition than with transient pyramidal excitation. Therefore, although it still remains possible that regions of hypometabolism observed in some previous 2-DG studies may actually reflect mild inhibition, other mechanisms such as disfacilitation are more likely mechanisms for this metabolic pattern.
We used in situ autoradiographic ligand binding methods to determine the occurrence and distribution of dopamine D1 and D2 receptor sub-types in the anole lizard, Anolis carolinensis. Both were present and exhibited pharmacological specificity characteristics similar to those described for mammals. However, unlike in mammals where in the neostriatum [outside the nucleus accumbens/olfactory tubercle complex (NA/OT)] these receptors exhibit only slight dorsolateral (D2 high, D1 low) to ventromedial (D1 high, D2 low) gradients that co mingle extensively, in the anole striatum outside the NA/OT there was a striking laminar pattern, with little if any overlap between D2 (high in a dorsal band) and D1 (high ventral to the D2 band) distributions. As D1 receptors are related to the direct and D2 to the indirect basal ganglia (BG) subsystems in mammals, we also determined anole striatal distributions of pre-proenkephalin mRNA, a marker for striatal efferents to the indirect BG subsystem in mammals. Here, too, there was a striking laminar pattern, with pre-proenkephalin mRNA in a band similar to that seen for D2 receptors. The crisp neuroanatomical separation between these classic BG subsystem markers in Anolis striatum make this species attractive for the study of such systems'' functions during behavior.
Ritualistic displays of aggressive intent are important social signals, often obviating physically dangerous engagement. To date, however, brain regions mediating such behaviors are not established. Here we used male Anolis carolinensis together with an in vivo 14C-2-deoxyglucose method to determine patterns of brain activation during elicitation of this animal’s dominance displays vs. other behaviors. By patching one eye regional brain activation in the hemisphere receiving display-evocative visual stimuli (‘seeing’ side) was compared to activity in the contralateral brain that did not see specific stimuli (‘patched’ side); this was quantitated as the ratio of seeing/patched activity for brain regions of interest. Lone males displaying dominantly to mirrors activated dorsolateral basal ganglia (BG) in the seeing, compared to the patched hemisphere; this was not seen in various non-displaying controls. Degree of dorsolateral BG activation also correlated with a measure of dominant display activity, but not with locomotion. In socially stable pairs, displaying dominants showed similar activation of dorsolateral BG, but deactivated ventromedial BG; non-dominant cagemates displaying submissively had the opposite pattern. When cohabiting peacefully without displaying, paired dominants’ and subordinates’ brain activity patterns were similar to each other. Thus, different BG subsystems seem involved in dominant vs. submissive display behaviors. Given similarities in both social displays and BG organization, homologous brain systems might have similar functions in members of other amniote classes, including primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.