Evoked activity in the mammalian cortex and the resulting behavioral responses exhibit a large variability to repeated presentations of the same stimulus. This study examined whether the variability can be attributed to ongoing activity. Ongoing and evoked spatiotemporal activity patterns in the cat visual cortex were measured with real-time optical imaging; local field potentials and discharges of single neurons were recorded simultaneously, by electrophysiological techniques. The evoked activity appeared deterministic, and the variability resulted from the dynamics of ongoing activity, presumably reflecting the instantaneous state of cortical networks. In spite of the large variability, evoked responses in single trials could be predicted by linear summation of the deterministic response and the preceding ongoing activity. Ongoing activity must play an important role in cortical function and cannot be ignored in exploration of cognitive processes.
The classical view of neural coding has emphasized the importance of information carried by the rate at which neurons discharge action potentials. More recent proposals that information may be carried by precise spike timing have been challenged by the assumption that these neurons operate in a noisy fashion--presumably reflecting fluctuations in synaptic input and, thus, incapable of transmitting signals with millisecond fidelity. Here we show that precisely synchronized action potentials can propagate within a model of cortical network activity that recapitulates many of the features of biological systems. An attractor, yielding a stable spiking precision in the (sub)millisecond range, governs the dynamics of synchronization. Our results indicate that a combinatorial neural code, based on rapid associations of groups of neurons co-ordinating their activity at the single spike level, is possible within a cortical-like network.
It is now commonly accepted that planning and execution of movements are based on distributed processing by neuronal populations in motor cortical areas. It is less clear, though, how these populations organize dynamically to cope with the momentary computational demands. Simultaneously recorded activities of neurons in the primary motor cortex of monkeys during performance of a delayed-pointing task exhibited context-dependent, rapid changes in the patterns of coincident action potentials. Accurate spike synchronization occurred in relation to external events (stimuli, movements) and was commonly accompanied by discharge rate modulations but without precise time locking of the spikes to these external events. Spike synchronization also occurred in relation to purely internal events (stimulus expectancy), where firing rate modulations were distinctly absent. These findings indicate that internally generated synchronization of individual spike discharges may subserve the cortical organization of cognitive motor processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.