The aim of this study was to achieve more understanding of the mass transfer characteristics of the filmadsorber haemoperfusion device. First, a structural model with mathematical description of the different diffusion steps was developed. Exact quantification appeared very difficult, resulting in insufficient fit of predicted and measured concentration curves. Moreover, the mathematics turned out simple, since the concentration courses could be described with one exponential power. Therefore, a formal model was developed, assuming linear isotherms and adsorption, proportional to the average concentration in the column. With this model predicted in-vitro inlet and outlet concentrations could be fitted to the measured data accurately. A relation between both models is given under the condition of high intraparticle mass transfer, which is allowed in case of powder adsorbents. It can be concluded that structural models do not yield predictive tools for optimization of device geometry. A formal model with two constants determining device performance enables device optimization with the help of some in-vitro experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.