Abstract. The World Soil Information Service (WoSIS) provides quality-assessed and standardised soil profile data to support digital soil mapping and environmental applications at broadscale levels. Since the release of the first “WoSIS snapshot”, in July 2016, many new soil data were shared with us, registered in the ISRIC data repository and subsequently standardised in accordance with the licences specified by the data providers. Soil profile data managed in WoSIS were contributed by a wide range of data providers; therefore, special attention was paid to measures for soil data quality and the standardisation of soil property definitions, soil property values (and units of measurement) and soil analytical method descriptions. We presently consider the following soil chemical properties: organic carbon, total carbon, total carbonate equivalent, total nitrogen, phosphorus (extractable P, total P and P retention), soil pH, cation exchange capacity and electrical conductivity. We also consider the following physical properties: soil texture (sand, silt, and clay), bulk density, coarse fragments and water retention. Both of these sets of properties are grouped according to analytical procedures that are operationally comparable. Further, for each profile we provide the original soil classification (FAO, WRB, USDA), version and horizon designations, insofar as these have been specified in the source databases. Measures for geographical accuracy (i.e. location) of the point data, as well as a first approximation for the uncertainty associated with the operationally defined analytical methods, are presented for possible consideration in digital soil mapping and subsequent earth system modelling. The latest (dynamic) set of quality-assessed and standardised data, called “wosis_latest”, is freely accessible via an OGC-compliant WFS (web feature service). For consistent referencing, we also provide time-specific static “snapshots”. The present snapshot (September 2019) is comprised of 196 498 geo-referenced profiles originating from 173 countries. They represent over 832 000 soil layers (or horizons) and over 5.8 million records. The actual number of observations for each property varies (greatly) between profiles and with depth, generally depending on the objectives of the initial soil sampling programmes. In the coming years, we aim to fill gradually gaps in the geographic distribution and soil property data themselves, this subject to the sharing of a wider selection of soil profile data for so far under-represented areas and properties by our existing and prospective partners. Part of this work is foreseen in conjunction within the Global Soil Information System (GloSIS) being developed by the Global Soil Partnership (GSP). The “WoSIS snapshot – September 2019” is archived and freely accessible at https://doi.org/10.17027/isric-wdcsoils.20190901 (Batjes et al., 2019).
Abstract. The aim of the World Soil Information Service (WoSIS) is to serve quality-assessed, georeferenced soil data (point, polygon, and grid) to the international community upon their standardisation and harmonisation. So far, the focus has been on developing procedures for legacy point data with special attention to the selection of soil analytical and physical properties considered in the GlobalSoilMap specifications (e.g. organic carbon, soil pH, soil texture (sand, silt, and clay), coarse fragments ( < 2 mm), cation exchange capacity, electrical conductivity, bulk density, and water holding capacity). Profile data managed in WoSIS were contributed by a wide range of soil data providers; the data have been described, sampled, and analysed according to methods and standards in use in the originating countries. Hence, special attention was paid to measures for soil data quality and the standardisation of soil property definitions, soil property values, and soil analytical method descriptions. At the time of writing, the full WoSIS database contained some 118 400 unique "shared" soil profiles, of which some 96 000 are georeferenced within defined limits. In total, this corresponds with over 31 million soil records, of which some 20 % have so far been quality-assessed and standardised using the sequential procedure discussed in this paper. The number of measured data for each property varies between profiles and with depth, generally depending on the purpose of the initial studies. Overall, the data lineage strongly determined which data could be standardised with acceptable confidence in accord with WoSIS procedures, corresponding to over 4 million records for 94 441 profiles. The publicly available data -WoSIS snapshot of July 2016 -are persistently accessible from ISRIC WDC-Soils through
No abstract
Abstract. The World Soil Information Service (WoSIS) provides quality-assessed and standardised soil profile data to support digital soil mapping and environmental applications at broad scale levels. Since the release of the first WoSIS snapshot, in July 2016, many new soil data were shared with us, registered in the ISRIC data repository, and subsequently standardised in accordance with the licences specified by the data providers. Soil profile data managed in WoSIS were contributed by a wide range of data providers, therefore special attention was paid to measures for soil data quality and the standardisation of soil property definitions, soil property values (and units of measurement), and soil analytical method descriptions. We presently consider the following soil chemical properties (organic carbon, total carbon, total carbonate equivalent, total Nitrogen, Phosphorus (extractable-P, total-P, and P-retention), soil pH, cation exchange capacity, and electrical conductivity) and physical properties (soil texture (sand, silt, and clay), bulk density, coarse fragments, and water retention), grouped according to analytical procedures (aggregates) that are operationally comparable. Further, for each profile, we provide the original soil classification (FAO, WRB, USDA, and version) and horizon designations insofar as these have been specified in the source databases. Measures for geographical accuracy (i.e. location) of the point data as well as a first approximation for the uncertainty associated with the operationally defined analytical methods are presented, for possible consideration in digital soil mapping and subsequent earth system modelling. The latest (dynamic) set of quality-assessed and standardised data, called wosis_latest, is freely accessible via an OGC-compliant WFS (web feature service). For consistent referencing, we also provide time-specific static snapshots. The present snapshot (September 2019) comprises 196,498 geo-referenced profiles originating from 173 countries. They represent over 832 thousand soil layers (or horizons), and over 5.8 million records. The actual number of observations for each property varies (greatly) between profiles and with depth, this generally depending on the objectives of the initial soil sampling programmes. In the coming years, we aim to fill gradually gaps in the geographic and feature space, this subject to the sharing of a wider selection of soil profile data for so far under-represented areas and properties by our existing and prospective partners. Part of this work is foreseen in conjunction within the Global Soil Information System (GloSIS) being developed by the Global Soil Partnership (GSP). The WoSIS snapshot – September 2019 is archived and freely accessible at https://doi.org/10.17027/isric-wdcsoils.20190901 (Batjes et al., 2019).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.